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Fluctuating elastic rings: Statics and dynamics

Sergey Panyukdvand Yitzhak Rabih
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 13 November 2000; revised manuscript received 8 February 2001; published 20 Jyne 2001

We study the effects of thermal fluctuations on elastic rings. Analytical expressions are derived for corre-
lation functions of Euler angles, mean-square distance between points on the ring contour, radius of gyration,
and probability distribution of writhe fluctuations. Since fluctuation amplitudes diverge in the limit of vanish-
ing twist rigidity, twist elasticity is essential for the description of fluctuating rings. We discover a crossover
from a small scale regime in which the filament behaves as a straight rod, to a large scale regime in which
spontaneous curvature is important and twist rigidity affects the spatial configurations of the ring. The
fluctuation-dissipation relation between correlation functions of Euler angles and response functions, is used to
study the deformation of the ring by external forces. The effects of inertia and dissipation on the relaxation of
temporal correlations of writhe fluctuations, are analyzed using Langevin dynamics.
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[. INTRODUCTION tions and for all its moments, are derived. A crossover length
scale is found, below which straight rod behavior dominates
Small circular loops of DNAplasmids play an important  and the twist of the cross section with respect to the center
role in biological processes such as gene transfer betwedime is uncorrelated with the conformation of the center line.
bacteria and in biotechnological applications where they aré\bove this length scale the nonvanishing spontaneous curva-
used as vectors for DNA clonind.]. The simplest minimal ture of the ring begins to play a role and twist rigidity affects
model that captures both the topology and the physical propthe three-dimensional conformation of the center line of the
erties of such an object is that of an elastic ring that has bothing. The correlation functions of Euler angles are used to
bending and twist moduli. This model was used in a recenpredict the mechanical response to external torques and
study of writhe instability of a twisted rin§2,3]. However,  forces, and to examine the effect of spontaneous orientation
since this work focused on the mechanical aspects of thef the cross section, on the deformation of ribbonlike rings.
problem and did not consider the effects of thermal fluctuaThe dynamic correlation function of writhe fluctuations is
tions, it cannot be directly applied to plasmids and othercalculated in both the inertial and the dissipative regimes. In
microscopic rings. The consideration of fluctuations is im-the former case, oscillatory decay of the correlations with
portant since they dominate the physics of macromoleculeme is observed. When inertia is negligible, the relaxation is
and determine their statistical properties, such as charactemonotonic and there is a transition from a short-time regime
istic dimensions, dynamics in solutidd], kinetics of loop in which the relaxation rate depends only on the bending
formation, and dissociation of short DNA segmefi$and  rigidity, to a long-time regime where the decay is affected by
molecular beacongg]. Recently, we developed a theory of both bending and twist modes.
fluctuating elastic filaments, with arbitrary spontaneous cur- In Sec. Il we present the generalized Frenet equations that
vature, torsion, and twist in their stress free sfate Since  describe the conformation of a filament, and introduce the
topological constraints were not taken into account in thislastic energy that governs its fluctuations about the stress-
paper, our analysis was limited to open filaments and couldree state. We express the curvature and torsion parameters
not be directly applied to the study of closed objects thathat characterize this conformation, in terms of the Euler
have the topology of a ring. angles, and write down the elastic energy as a quadratic form
The present paper is an expanded version of a letter i the deviations of these angles from their values in the
which we presented the solution of this problem for weaklyundeformed ring. The topological constraints corresponding
fluctuating ringg[8]. The analysis of Ref.8] is generalized to a ring are introduced as integral conditions on the fluctua-
to the case of ribbonlike filaments, with two principal axes oftions of the Euler angles, and result in the vanishing contri-
inertia in the cross-sectional plane. We calculate the correlasution of some of the lowest Fourier modes to the fluctuation
tion functions of Euler angles, and use them to obtain othespectrum. In Sec. lll we diagonalize the elastic energy, ob-
statistical properties of fluctuating rings, such as meantain the spectrum of normal modes, and discuss their physi-
square spatial distance between points on the ring contoucal meaning. In Sec. IV we use this eigenmode expansion to
and the radius of gyration. Analytical expressions for thecalculate the correlation functions of Euler angles. We study
complete probability distribution function of writhe fluctua- the dependence of the correlators on physical parameters
such as bending and twist rigidities, and on the spontaneous
orientation of the principal axes of inertia of the cross section
*Permanent address: Theoretical Department, Lebedev Physiwgith respect to the plane of the ring, and discuss the geom-
Institute, Russian Academy of Sciences, Moscow 117924, Russiatry of typical configurations of the ring. In Sec. V we derive
electronic address: panyukov@Ipi.ac.ru explicit expressions for the orientational correlation function
TElectronic address: yr@rabinws.ph.biu.ac.il of the tangents to the ring, root-mean-squaras) distance
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between points on the ring contour, and the radius of gyra-
tion, in terms of correlation functions of Euler angles com-
puted in the preceding sections. In Sec. VI we express the
writhe and twist numbers that characterize an instantaneous
configuration of the ring, in terms of Euler angles. We then
use the correlation functions of Euler angles to calculate the
probability distribution function of writhe fluctuations and
study its dependence on the bending and twist rigidities. We
find that the amplitude of writhe fluctuations exhibits a cross-
over from a small-scale, straight-rodlike regime in which a
twist of the cross section has no effect on the spatial confor=
mations of the center line, to a large-scale regime in whic
the two types of fluctuations become strongly coupled due to
the spontaneous curvature of the ring. In Sec. VIl we use the
fluctuation-dissipation theorem that relates the previously
calculated equilibrium correlation functions of Euler angles
to the response functions, in order to study the linear re-
sponse of a ring to small externally applied forces and mo-
ments. We show that the deformation of a ribbonlike ring
depends in an essential way on the orientation of its cross
section in the undeformed reference state. In Sec. VIII, we
derive the Langevin equations that describe both the inertial
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Substituting Eqs(3) — (5) into Eq. (1), the Frenet equations
fFan be rewritten in the form:

de )
gs_ @1 Siny+ w, COSyY,
do :
Esm 0= — w4 COSY+ w5 SiNyY, (6)

l'/sjsin 0= (w1 COSY— w5 SiNy)CcOSH+ w3 Sin 6.

and the dissipative dynamics of Euler angles, and use thei®olving these equations with respect{ts;} yields

to study the effects of bending and twist rigidities and of the
orientation of the cross section of the ribbon, on the fre-
qguency spectrum and temporal relaxation of its writhe
modes. Details of the derivation of the Langevin equations
and the calculation of the dynamic correlation functions, are
given in Appendixes A and B, respectively. In Sec. IX we

summarize our main results and discuss the domain of valid-

ity of our theory.

Il. GENERAL APPROACH

The general theory of fluctuating noninteracting elastic
filaments was presented in Rdf7/]. To each points one
attaches a triad of unit vectofg;(s)} wherets(s) is the
tangent vector to the curve at and the vectors,(s) and
to(s) are directed along the axes of symmetry of (e
general, noncircularcross section. The spatial conformation

x(s) of the filament is given by the generalized Frenet equa-

tions
dt;
d_s:_% €jk w;ly, (1)

together with the inextensibility condition,
dx/ds=ts, 2

whereg;j is the antisymmetric unit tensor and the param-

B de P N dé 7
wl——Esm cosys d—ssmzp, )
_dcp ) ] dé g
wz—Esmasmz//er—scosd/, (8
dy de
w3—E+COSGE. (9)

We assume that the center line of the undeformed ring
forms a circle of radius in the xy plane, and that its cross
section is rotated by anglgy(s) around this center line. The
Euler angles that describe this configuration are

90= 7T/2, (,DOZS/I’, lﬂO:kS/Zr‘{‘lﬂoo, (10)

wherek is an integer andyy is a constant, independent ®f
Egs.(7) — (9) can be rewritten in the form

wo1=—(1/r)cosyy, wgr=(1/r)sinyyg,
and (Uogzdl,bolds. (11)
Although, in general, the stress-free state of the ring can be
arbitrarily twisted(e.g., because of the intrinsic tendency of

the filament to twist in this paper we will not consider the
spontaneous twistafpz=0), and takingk=0, we sety,

eters{w;(s)} characterize the curvature, torsion, and twist of = ¥oo (for brevity, we will denote this constant by, in the
the filament. The components of these vectors can be exfollowing). This angle characterizes the orientation of the

pressed in terms of the Euler anglése, and ¢:

€0SH COS¢p COSY—Sing sinys
t,=| cosésine cosy+cose siny

, ©)

—sinf cosy

principal axes of the cross section with respect to the plane
of the undeformed ring. In the case of a circular cross sec-
tion, all physical observables are independenggfind it is
convenient to se,=0.

The corresponding Euler parametrization of the triad vec-
tors is
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—sin(s/r)sinyy, —sin(s/r)cosiy, space curve$l0]. A circular planar ring hasc,=1/r and

. 70=0. Expanding in small deviations about these values
to;=| cogs/r)singg |, ty,=| cogs/r)cosyy |, yioelds
—COoSy sinyyg
dé 560 d*s6
cogs/r) 5K:d—S<P and 5T=T:_T_r ey (16)
tog=| Sin(s/r) |. (12)

0 As expected, fluctuations of the curvature represent bending

.deformations in the plane of the ring, and depend only on the
In the absence of excluded volume and other nonelastic : . :
. . ' . . anglee that describes the rotation of the tangent to the ring,
interactions, the energy of a filament is of a purely elastic : . e

. ' . in the xy plane[see Eq(5)]. Torsion describes deviations of
origin and can be represented as a quadratic form in th

deviationséw, = w,— g [2.7] the filamen_t from this plane, and its fluctuations d(_epen_d only
ko Tk ok L= on the deviations of the angkefrom /2. The specification
3 of the local curvature and torsion completely determines the
dsZ ak&uﬁ, (13) configuration of the center line of any curved filament, and
k=1 the Euler anglel complements the description by specifying
the rotation of the cross section about this center line. How-
ever, the elastic energy cannot be factorized into a sum of

t 1o th dina def ® des. The ab contributions due to deformation of the center line and rota-
respect lo the corresponding detormation modes. 1€ abo\g,, ahqyt jt. As will be shown in Sec. Viy;(s) defines the
expression for the energy is based on the linear theory o

? “rate of twist and therefore the persistence leraghs asso-
Giated with twist. Twist represents not only the rotation about
the center lingthedy/ds term in Eq.(9)], but also contains
a contribution due to the curvature of the center litiee
9sad¢/ds term in the above equatignSimilarly, although
Inspection of Eq.1) suggests thatv;(s) and w,(s) com-
pletely determine the variation of the tangepfs) as one
moves along the contour, this variation depends on the main
axes of the cross section afthe vectorst;(s) andt,(s)],
that themselves rotate with the cross section. This explains
Sthe ¢ dependence ofv; and w, in Eqgs. (7) and (8). The
relation between the two description®(¢, ¢} and{w;}) is
a,=3ul,/kgT, a,=3ul,/kgT, and az=C/KgT, a special case of the more general relation between Eulerian
(14) and Lagrangian descriptions in the theory of elastifity].
While the Euler angles describe the orientation of the triad
where the torsional rigidityC is also proportional tqu and  {t;(s)} in the laboratory frame, the parametarg(s) de-
depends on the geometry of the cross sedtfonan ellipti-  scribe the local variation of this orientation as one moves
cal cross section with semi-axesl; and d,, C along the curve, in the frame associated with the triad itself.
= 7ud3d3/(d2+d3)]. In this paper, we will tread; as given  The simple form of the energy, E(L3), is a direct conse-
material parameters of the ring. guence of this Lagrangian description.
In the following, we consider only small fluctuations of  Substituting Eqs(15) into the elastic energy, Eq13),
the Euler angles about their values in the undeformed statgjelds
Eqg. (10). This approximation remains valid as long as the
bare persistence lengths are much larger than the radius of 2m [A[dS0 S¢\? A,[dSe\?
the ring, i.e.,a,>r. Expanding Eqgs(7) — (9) in small de- U:kBTf 5[7(@ T) ?(E)
viations from the stress-free state, we find

_kBT 27
2 Jo

wherekg is the Boltzmann constant, is the temperature,
and the bare persistence leng#gepresent the rigidity with

length scalde.g., radius of curvatuyeés much larger than the
diameter of the filamer®]. Since the persistence lengths are
determined by material properties on length scales of th
order of this diameter, they are the same as those of a straig
rod. We conclude thad; and a, are associated with the
bending rigidities of the filament with respect to the two
principal axes of inertid,; and |, (they differ if the cross
section is not circulgr and thataz is associated with twist
rigidity. In the special case of incompressible isotropic rod
with shear moduluge, the theory of elasticity yieldg9]

0

dseo S¢\ds déy 56\
sy 22+ 999 G o 820 R e K
w1= r dS S|nl//0 dS COS(/lo,
sy dso doe where the coefficientd,; are defined as,
Swy=|—=+ d_> cos¢0+d—sin o, (15
r S S A1=a1 CO§ l/lo+ a.z S|n2 l/lo, A2:a1 S|n2 lﬂo"' a2 CO§ l,bo,
déy 660 .
Sw3=—g Az=(a,—a,)cos iy Sinig. (18

It is instructive to relate the above parameters to the curfora,>a,, the constant Euler angl¢, measures the angle
vaturex and torsionr familiar from differential geometry of between the major axis of inertia and thg plane. The case
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#0=0 (o=m/2) corresponds to major axis that lies in the The energy does not depend on modéd)=—i6(1) and

xy plane(normal to thexy plang. The coefficientsA; obey
the relations

AA—Al=aja,, A+A,=a;+a,. (19

The periodic boundary conditions on the Euler angles
60(2wr)=066(0), Jy(2mwr)=35y(0),

So(2mr)=356¢(0), (20

are supplemented by the condition that the ring is closed in

three-dimensional space(2#r)=x(0). Using Eq.(2), this
condition can be recast into an integral form,

fzmdsﬁt?,(s):O. (21
0

For small deviations from equilibrium we get from Eq.
(5),
— S @(s)sin(s/r)
o p(s)cogs/r)
—66(s)

(22

ots(s)

and the boundary conditions can be written as

2@ 2@r
f d550(5)=f dsé ¢(s)cogs/r)
0 0

fzmdsa o(S)sin(s/r)=0. (23
0

Since the deviations of the Euler angles are periodic func-

tions of s, they can be expanded in Fourier series

6n<s>=§ 2MEMT P(—m=7*(n), (29

for eachn= 0, ¢, 4, where the sum goes over all positive and

negative integers. The boundary conditions Eq&23) can
be expressed as conditions on the Fourier coefficients,

8(0)="p(1)=0. (25)
Substituting Eqs(24) into Eq. (17) we find,

U p—
2mrkgT

1A~ o i~ ~ a2
2 7| H(0)]°+(Ar+ag)|i (1) + ¢(1)]

1 - -
+r—2n§2 [AL]inB(n)+3%(n)|?

+A,n?o(n)|2—2A4[in6(n) +

P(n)ling(—n)+agling(n)—8(n)|%. (26)

¢(0) that correspond to a rigid body rotation of the entire
ring, with respect to axes lying in the plane of the ring and
normal to it, respectively.

The quadratic form inside the sum omein Eq. (26) can
be represented as a matrix in the space spanned by the Fou-
rier componentsé(n),e(n), and y(n) (this applies ton
>1; the cases=0,+1 will be considered separately

An?+a;  Agn® —i(A+agn
Q)=| Asn®  A;n®  —iAgn 27)
i(Ajtag)n iAgn  agn’+A;

Ill. SPECTRUM OF FLUCTUATIONS

In order to obtain the spectrum of fluctuations of the ring,
we diagonalize the free energy E@®6) by expanding the

Fourier components;(n) in the eigenvectorsy(n) of the
matrix Q(n),

77<n)=2k ci(n) 7(n), (28)

where =0, ¢,y and n(n) is the »th component of the
eigenvecto (n) ={6,(n), o (n), Y (n)} of the quadratic
form Eq. (26) corresponding to the eigenvalag(n). They

are normalized by the conditions,

2 pdmm(=m=8q, 2 M A(—n)=3,, .
vi
(29)
Expanding the elastic energy in the eigenmodes gives

Zo ; Me(n)c(n)|%.

I n

_ 7TkBT

u

(30

The three eigenvalues,(n) corresponding to the Fourier
moden, are the roots of the characteristic cubic polynomial,

)\3_b2)\2+ b17\—bo=0, (31)

with coefficients
bo=aja,azn?(n?—1)2,

b,=(a,a,+ayaz+ajaz)n?(n*+1)—Ajaz(3n’—1),
(32)

b,=(a;+a,+az)n®+A; +as,

where we used Eq$18) and (19) to simplify cumbersome
mathematical expressions. Since the ma@pn) is Hermit-
ian, its eigenvalues are real.

Inspection of Egs.(31) and (32) shows thatA,(—n)
=\(n) and that all eigenvalues witlh™>1 are positive. Be-
cause of the boundary conditions, E¢®5), there are only

011909-4



FLUCTUATING ELASTIC RINGS: STATICS AND DYNAMICS PHYSICAL REVIEW E64 011909

two independent normal modes corresponding to each of the (n?—1)2
casesh=0 andn=1. In order to understand the physical )\2(”)=3le for n=1,
meaning of these modes, we introduce the components of the n
Fourier transforms of the curvature and torsion, Bd),
Ag(n)=ag(n®+1) for n=2. (35
~ in. 4 e -1 a3
(n)= T"D(n) and (n)= r 6(n). (33 In the opposite limia;<a,, the eigenvalues can be found by
5 5 substitutinga,« a5 in Eq. (35).

Substituting the boundary condition®0)=¢(1)=0 into Inspection of Eq(34) shows that\3(n) vanishes identi-

the above expressions we conclude that for modes with cally for all n when a;=0 [this statement applies even to
=0 and 1, bothéx and &7 vanish and, therefore, these rings with noncircular cross section—see E@31) and
modes do not affect the planar circular configuration of the(32)], indicating that the amplitudes of the corresponding
center line of the ring. There are two zero energy modes thétuctuation modes grow without limit in the absence of twist
correspond to symmetry operations on the undeformed ringigidity. Examining the expression for the elastic energy, Eq.
One n=0 mode, with eigenfunctiorp,(0)=1; #,(0)=0, (17), we conclude that these zero energy modes correspond
describes the rotation of the ring about thexis. Onen  to fluctuations for which

=1 mode, with eigenfunctiod,(1)=1; 4(1)=—1i, corre-

sponds to the rotation of the ring about an axis in %ye

plane. The two remaining modes have an energy gap and are déolds=—3Syir. (36)
twist modes that leave the center line undisturbed. mhe

=0 mode with eigenfunctiorp,(0)=0; ¢»(0)=1 has an |n the absence of twist rigidity, twist fluctuations carry no
eigenvaluen»(0)=A;, and describes the uniform twist of energy penalty and the angle of the twist of the cross section
the ring about its center line. Since this eigenvalue does nqts 4) can always adjust itself to an arbitrary deviation of the
vanish for arbitrarya; anda,, we conclude that the uniform center line from the plane of the unperturbed rindyjj, so
twist of a ring costs energy even if the ring has a circularthat this condition Eq(36) is satisfied. The presence of an
cross section. This conclusion agrees with R&2], where  infinite number of zero energy modes means that the twist
the dynamics of the uniform twist mode was studied. Therigidity (a;#0) is absolutely essential for stabilizing the
n=1 mode with eigenfunctio,(1)=1; ¢»(1)=i has the ring against out-of-plane fluctuations, and that bending elas-

eigenvalue\,(1)=2(A;+a3) and corresponds to the rota- ticity alone cannot suppress this instability.
tion of the ring with respect to an axis that passes through the

center line and lies in they plane, accompanied by the twist
of the cross section by the anglethat varies periodicalljas
cos@/r)] along the contour of the ring. The dynamics of this Applying the equipartition theorem to E¢B0), we get
mode was studied in Ref13].

In the limit n>1, fluctuations of the three Euler angles
are decoupled and,(n)=a.n?. In general, each normal r
mode of the ring corresponds to fluctuations of all three Eu- (ck(n)ck/(—n’))zmﬁnnﬁkk, . (37)
ler angles,s 6(s), 6 ¢(s) and 6 ¢(s), and describes a com- Tk
plex three-dimensional configuration. . . ) )

The eigenvalue problem is simplified for a circular crossUSing expansion28) and averaging with the help of Eq.
section @,=a,), or when the cross section is asymmetric 37), the_ correlation funt_:tlons of Euler angles can be ex-
but o=0 (the casey,= /2 is reduced toyy=0 by the pressed in terms of the elgehvaIUQ(sQn) and the eigenfunc-
substitutiona, <~ a,). In these cases, the modap(s) de-  1ONS 7(n) of the Q(n) matrix:
couples from the other two modes and has the spectrum
A i(n)=a;n?(n#+1). This mode corresponds to bending
fluctuations that lie entirely in the plane of the ring. The
other two modes are linear combinations 6%(s) and
S i(s), with eigenvalues

IV. CORRELATIONS OF EULER ANGLES

<5n<s>6n'<s'>>=§ e ((n) ' (—n))

_IS g sy MW7)
w5 © k A(n) 7
_axtas

Nogn)=——5—(n*+1) -

\/ ,—ag\? ) ) ) wheredén,6n'=66, 6 ¢, . Care should be exercised in
V75| ("D +4n%aza,. (34 evaluating the above expression, when considering the con-

tribution of the modes witm=0,=1, since modes with van-
Equation(34) can be further simplified in the limit of large ishing eigenvalues should be excluded. A straightforward
rigidity with respect to twistaiz>a, in which case calculation gives
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s—s’) 0 [s—¢s'
[0 00 . o3 —sin
. , n -n
gin(s—s )/rE 7d(N) 7 ):_ 0 0 Of+ 0 0 0 , (39
n=0.1 K Ak(n) Aq Aitag
0 0 1 . (s—s') S(s—s’)
sin 0 co
;
where 7,7, denotes the direct product of two vectays, the 7’ component of which isg 7y .
Forn+#0,=1 we find
n(nMp(—=n)
Ek W— ,m,(n), (40)
whereQ%(n) is the inverse of the matriQ defined in Eq.(27),
1 n? —A; 1 1 in
+ —t — |
az(n®-1)%2 a,(n?-1)> aja,(n®-1) az a,/(n?-1)?
—As 1 —iAs
“(n)= —_ — —_ : 41
Q- a;a,(n?—1) ayn? a,a,(n>—1) 4
1 1 in iAg n2 1
— —+ — —+
az a,/(n?-1)2 aa,n(n®—1) az(n?-1)? a,(n>-1)*?
|
and where . o sin(s/r)+ ri1 1 . s
_ _ (6 0(s1) 8 ¥(s7)) = 7 Aray et )
1 coyy Sy, 1 sy, cog iy
a  a | a a & T, (“42) 5 5 rsin2go)( 1 1 .
(Se(s1)d ()=~ —%— & a) 8\r)
Effective persistence lengtltes anda, control both fluctua- ]
tions perpendicular to the plane of the ring and fluctuationgvhere we defined, for @x<2,
of the twist angley, anda; controls fluctuations in the plane -
of the ring. Using Eqs(38) and(41), we obtain the correla- =3 n=cosnx
tion functions of Euler angleghere s=|s,—s,;|, 0<s . =2 (n2—1)2
<2mr)
B (m—x)? 772+ 1 T—X
5 5 _rcogsir) 1 (s (s |8 24" 16|90 T4 %
(80(s1) G(SZ»_;W ot Iy R E Y )
Lo0=S cosnx (m—x)? 72
X)= = —= —COSX,
r (s 2 = 2 4 12
<5(’D(Sl)5(’0(82)>:7r_a”f2 F)’ )
cosnx
fa)=2 ———
(5 (505 H(S) rrcogslr) r s) n=2 (n°—1)
s S,)) = + — —f, =
1 2 mA; m Ajt+az  mag H\r (m—x)2 @2 T—X 1
; S) = T_ ﬂ—l—GCOSX-i— 4 smx—z,
+——f4 =], 43
ra, 3l (43 (44
rsin2go)( 1 1 “. nsinnx
= " f4(x)= —_—
(30500 e(sy)=——5 | = o 0= 2
ol (3]s (3 m=x? w1
1 F 3 F ) = 8 z+1—6 SINX,
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FIG. 1. Plots of two-point correlation functions of Euler angles  FIG. 2. Plots of two-point correlation functions of Euler angles
(8n(s)dn'(0)) vs the contour distance between the posits the  (§7(s) 53'(0)) vs the contour distance between the poais the
interval O<s<2mr: (5 6(s)5 6(0)) (cross, (S ¢(s)d ¢(0)) (dia-  interval O<s<2zr: (56(s)56(0)) (cross, (&8y(s)d y(0))
mond, {8 ¢(s)é ¢(0)) (circle), and {5 6(s) S ¥(0)) (solid line). (circle), and (5 6(s) 5 (0)) (solid line). The parameters argy,
The parameters arg,=0 anda;=a,=10r, az=100. =0 anda;=a,=10r, az=r.

sinnx Egs. (43) we find (5 6(s1) 8 ©(S2))=(5 ¢(51) 5 ¥(s,))=0.

fo(X)= > ———— The physical reason for this behavior becomes clear when
n=2 n(n>-—1) one recalls the discussion of the eigenvalue problem for a
ring with circularly symmetric cross sectigsee Eq.(34)].
_ gsinx+ W;X(COSX— 1). In this case, fluctuations @f(s) decouple from those of the

other two angles and therefore, cross correlation functions
involving 8¢ vanish identically. In Fig. 1, we consider the

Inspection of Eqs(43) shows that the bare persistence casea,;=a,<ag, i.e., twist rigidity is much larger than the
length associated with the twist rigiditg; plays a funda- that of the bending modes. The diagonal angular correlation
mentally important role: fluctuations of the anglgsand &  functions are oscillatory functions of the contour distance,
and the correlation between these angles, diverge in the limitith maxima atjs,—s;|=0, =r and 2zr (they are symmet-
a;—0! Therefore, simplified models of elastic filaments ric with respect to reflection about the poist—s,|= 7).
with nonvanishing spontaneous curvature that do not tak&hese behaviors result from interference of two wave pack-
into account twist rigidity, cannot describe fluctuations andets propagating along two opposite directions along the ring.
elastic response of the ring. This is not the case for a straigh&s a consequence of the large twist rigidity, the correlator of
rod, whose spatial fluctuations can be successfully describettie twist angle is always positive, whikgs 6(s;) 8 6(s,))
by the wormlike chain modédll4] (with a;=0). The reason and(é ¢(s;1) 8 ¢(s,)) fluctuate around zero. The cross cor-
for the difference stems from the fact that the elastic energyelation function{86(s;) 8 ¥(s,)), vanishes afs,—s;|—0.
of straight rods contains no coupling between the angles thathe physical reason for this surprising behavior is that a
describe the spatial conformation of the center lid@(de)  short segment of the ring confined between these points can
and the angle that describes the twist of the cross sectiobe considered as a nearly straight incompressible rod. Since
about this center liney). When twist rigidity vanishesa;  the twist of such a rod does not produce any deformation,
=0) there is no energy penalty for twisting the cross sectiorocal fluctuations of twist, and of the other two modes are not
about the center line and the amplitude of twist fluctuationorrelated with each other. For larger contour separations,
of the cross section about the center line diverges, but thepontaneous curvature begins to play a role and fluctuations
presence of bending rigidityag ,a,# 0) suffices to suppress of 6 and ¢ become coupled. This is a manifestation of the
spatial fluctuations of the center line about its straight stresserossover from small scal@wist and spatial conformation
free configuration. For rings, the elastic energy in Ey)  fluctuate independentlyto large scale(coupled twist and
contains cross terms in the anglégy and & @ that couple center line fluctuationsbehavior, that will be discussed in
both types of fluctuations. Inspection of EG7) shows that greater detail in Sec. VI.
whenaz=0, fluctuations witrd§ 6/ds+ § ¢/r =0 have zero In Fig. 2 we present the case of small twist rigidigy,
energy cosfsee Eq(36)] and, since in the absence of twist =a,>as. The twist correlation function develops four nodes
rigidity the angled  can always adjust itself to satisfy the (i.e., points at which it vanishgsnd, at the same time, its
conditiond = —rd é 6/ds, for az=0 there is no elastic en- amplitude is strongly enhanced. In Fig. 2 we did not plot the
ergy penalty for out-of-plane fluctuations of the ring and thecorrelation functior{ 5¢(s;) 8 ¢(s,)), since it depends only
amplitude of such fluctuations diverges. We conclude thabn the bending rigiditiegsee the second of Eq&l3)] and is
standard wormlike chain theories in which only bending ri-therefore the same as in Fig. 1. Figure 3 deals with the case
gidity is taken into account, can not model fluctuating rings.of an asymmetric cross sectigor asymmetric rigidity in the

In Figs. 1-2 we plot correlation functions of Euler angles,cross sectional plane a;#a,. The cross correlations
for a ring with circularly symmetric cross section. Substitut-( 5 6(s;) 8 ¢(S,)) and (S ¢(s1) 8 ¥(s,)) no longer vanish
ing a; =a, in the expressions for the angular correlators in(for ¢,#0,7/2), even though their amplitude is much
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V. SPATIAL CORRELATIONS AND RADIUS OF
GYRATION

[

D

P~
1

We proceed to calculate the correlation functi@m(s,)
—X(s,)1?) that measures the mean-square spatial separation
between pointss; and s, on the contour of the filament.
Integrating Eq.(2), yields x(sl)—x(sz)=f§:t3(s’)ds’ and
we can express this correlation function in terms of the cor-
relator of tangents to the ring, at two arbitrary points on the
contour, (t3(s")t3(s")). We show below that this orienta-

‘ ‘ ‘ tional correlation function of the tangent vectors can be ex-
0 2 sir 4 6 pressed in terms of correlation functions of Euler angles.

FIG. 3. Plots of nondiagonal two-point correlation functions of Expanding the vectot; ,to second order in deylatlons of
Euler angleg 87(s)87r'(0)) vs the contour distance between the Euler anglessy from their unperturbed values gives,
points s in the interval Gss<2wr: (56(s)d ¢(0)) (cross,

(5 ¢(s)8 ¢(0)) (circle), and {5 6(s)5(0)) (solid line). The pa- _ B , 1 2 2
rameters arej,= /4 anda,=10r,a,=100r, az=10r. ts=tozt St3= 3 Oty +0 ety t| 1— 007+ 3¢ ) |tos

(47)

<o (s)dn'(0) >
bt

|
o
<
.
I

smaller than that of § 6(s) 8 #(0)). Since the arguments

presented in the preceding paragraph apply here as well, thgnhere the vectors; (s) are defined by

two cross correlation functions involvingys vanish ass,

—s;. The cross correlation functiofs 6(s;) 8 ¢(s,)) be- 0 —sin(s/r)

haves in a way similar to that of the diagonal correlation

functions and is symmetric abols,—s;|= . to(s)=| O |, ti(s)=| cogsir) [,
We would like to comment on the physical meaning of -1 0

fluctuations of the angle(s). We find from Eq.(43)

P SH 2r 1
([6@(sp)—d¢(s1)] >:a—H—?a—H 1

S cogs/r)
-2 co{;”, tox(s)=| sin(s/r) |. (48
(45 0

where the “parallel” persistence lengty is defined in Eq.  \when y,=0, these vectors coincide with the vectors of un-

(42), and wheres||=s(1—s/27rr_) is the effective contour perturbed triad, Eq(12). Using Eq.(47) we find (in matrix
length for the parallel connection of two segments, one Ohgtation

lengths=|s,—s;| and the second of lengthn2 —s (analo-
gously to parallel connection of resistors in an electrical cir- ta(SOa(S)) = (1= (S 62 —{ 502 ) tan( S )t an( S
cuit). The effective elastic modulus between poisitsands, (ta(s0)ta(2)) = (19 %) (5" to S)tox(S2)

is proportional to +(860(s1) 8 0(s2) ) tgy(S1)tpa(S2)

1 1 1 S +(8¢(51) 8 ¢(S2))toS1)1ox S2)
—=—+5——, O §=s 1—2— . (406)
S s 2m-s m +(8 0(51) 8 9(52) )t S ool S2)

The second term on the right-hand side of &) arises due +(8 @(S1) 8 0(S,) ) tpAS1)t01(S2),

to subtraction of the contribution of the mogi¢1) because (49)

of the closure of the ring. Eq45) describes the Brownian
fluctuations of phase(s) on a circle, with effective “diffu-
sion” coefficientafl. This means that the angdecan jump
discontinuously from point to point and therefore, the ampli-
tude of its derivativede/ds diverges. Sincale/ds is the
local curvature of the filameriisee Eq.(16)], we conclude
that ([ 8k(s)]?)—o. A similar calculation for the second
derivative of the angle shows that its amplitude diverges
and therefore([ 87(s)]?)—o as well. The above diver- s s
o S,—S sir S
gences are eliminated by a cutoff on length scales of the f dslf dszf( 2 1) :2r2] du(__u)f(u),
order of the thickness of the filament and, on length scales 0 0 r 0 r
larger than this diameter, the contour of the ring remains a (50
smooth and continuous curve in the process of thermal fluc-
tuations. valid for any even functiorf(x), we obtain

wheretg;tg; denotes the direct product of two vectogsand
to; - The correlation functions of the Euler angles that appear
in the above expressions are given in EB). As expected,
the normalization condition for unit vectorsts(s)-ts(s))
=1, is satisfied up to terms of second ordersin.

Using the equality
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(D -x(s 1) = [ "5 [ Tastts1s)

, s\] r3[1 (s i

=2re|l-cos—||——=|Z9 - -
r g aH r S 2

T

1 S 1 51 2

+—0, |- |+ —0a| = Y

aigl r a3g3 r I ( ) -%-

wheres=|s,—s;|, 0<s<2zr.and wherea ' is defined
in Eq. (42). The functionsy,g, andgs are given by

0¥~
0 2 s/r 4 6

g”(x)=ZJX(X—u)[fz(O)—fz(u)]Cosudu FIG. 4. Plot of dimensionless rms distance between points on
0 the ring contour{[x(s)—x(0)]2)/r? vs the contour distance be-
tween the points in the interval Gss<2#r. The parameters are
$o=0 and a;=a,=a;=10r (solid line, a;=a,=10r, az=r
(box), a;=a,=r, az=10r (crosg, anda;=10r, a,=az=r (dia-
mond.

2

X 1
=—(1+ cosx)( wx—?) - §(1+cos,x)2

+2(7m—X)Sinx+2,
which deviations from a straight rod become significant

(compare solid line and boxes in Fig. 4

X
gi(x)zzfo (x=u)[f1(0)cosu—Tfy(u)]du The radius of gyration is defined as

2

5 (53

Xm——=+1

1 x?
2

1 _ 1 RZ_ 1 q 1 %d’ )
cosx+§(7r—x)smx+§, 9o X(S) - s'x(s")

(52 Averaging this expression over fluctuations, we can express
(RS) in terms of the two-point correlation function

g3(x)=ZJOX(X—u)[f3(0)cosu—f3(u)]du

1
Rzz—fﬁdstd X(s1)—X(8,)13). (54
1 xz < g> 87T2r2 1 SZ<[ ( 1 ( 2)] > (
=—§<X7T—E+3 COSX
Using Egs.(51) and(52) we find
+ 3 mewsi L2038 17 a\r 3 r [7 r
—(m—X)sinx—xm7+ =+ 5. iy T
2 2 2 CAWSJ TP el () B
(Rg)=r {1 87 6/ay 4ma, \4m 6)ag

For small x<1 we have gj(x)=g, (x)=mx*/12 and
ga(x)zx4/32<g”(x). Combining these expressions into Eq.

, All the corrections to the unperturbed resulf) are nega-
(51), we conclude that the lowest-order corrections to th b X 9

; . 5 =5 ive, and we conclude that fluctuations make the ring more
straight line result{[x(s) —x(0)]%)sr—0=5", deper_uz only  compact. Since our weak fluctuation approximation is only
on the effective bending persistence lengtra2i(+a, "), N valid in the rangea;>r, these fluctuation corrections are
agreement with the wormlike chain model. For genefilis  ather small. Because of the small coefficient in front of the
correlator depends on all the bare persistence lengihge, /g, term, the effect of twist fluctuations on the radius of
andag. _ gyration is relatively weak, but fluctuations diverge and the
In Fig. 4 we plot the mean-square distance between tWeynression for the radius of gyration becomes unphysical in
points on the ring contou([x(s) —x(0)]%), as a function of  ihe [imit of vanishing twist rigidity,a;—0.
s, in the interval G=s<2mxr. As expected, it increases para-
bolically with s (straight rod behavior for sma#l) and ex-
hibits a maximum as= zrr (the maximum is determined by
the geometry of the undeformed ring-luctuations suppress The twist numbefTw associated with a configuration of
this maximum in a way that depends on the various rigiditythe ring can be expressed through the Euler angles,
parameters. Thus, decreasing the twist rigidifjnas a much

VI. WRITHE FLUCTUATIONS

smaller effect on the amplitude of the maximum, than de- Twe 1 q _ 1 e d_lPJr ad_<P q
creasing the bending rigidities; or a,. The origin of this W= or 3(S) STon o \ds Costys /s
effect is that twist rigidity does not affect the spatial confor- (56)

mations of a short segment of the ring that can be considered
as a nearly straight incompressible rod. Therefore, twist flucwhere we used the definition of the rate of twigf(s) about
tuations affect only the conformations of long segments, fothe tangent vector, in terms of the Euler angles, @g. In
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order to understand the physical meaningvgf consider the 1 (2mdée .
variation of the triad vectot, (or t,) as one moves an in- SWr=—45Tw= EJ 45 ¢ gds= 2. inp(n)é(—n),
finitesimal contour distancds along the center line of the 0 " (59)
curved filament. The projection of the vect(s+ds) on

the cross section at[the plane normal to the tange(s)],  where we usedds ¢=0 and$ s ads=0 [see Eq(23)]. The
rotates by an angle;(s)ds compared to its original direc- |ast equality in Eq(59) was derived using Eq24). Notice
consists of two contributions. The first term corresponds toynd 5 ¢, and we conclude that writhe deviations vanish both
the contribution of a straight filament of lengtts (the nor-  \yhen fluctuations of the angles are confined to the plane of

mal planes at points and s+ds remain parallel to each the ring (5 6=0), and when they are normal to this plane
othep, whose cross section is twisted around the center ling,5 ,—0).

by an angledy.. The second term caklp/dsarises due to the
curvature of the center line; since the cross sections at poin
sands+ds are, in general, tilted with respect to each other
the projection oft;(s+ds) on the cross section & will
rotate by cogide. Notice that because of the interplay of the

Since(o(n)(—n)) is an even function of, multiplying
&i/ n and summing over all positive and negative integer
'values ofn yields

two effects, a curved filament can have zero twist even if (8\Nr>=2 in(o(n)8(—n))=0. (60
dy/ds#0. This effect will be demonstrated in Sec. \(Hee n
Fig. 6).

In addition to the twist of the filament that is closely as- The dispersion of the writhe number is given by

sociated with the rotation of the cross section about a curved

center line, and can be defined both locdtlye twist “den- (SWrdy= > Wr¥(n),

sity” w3(s)] and globally Tw), one can introduce an inte- n#0x1

gral characteristic of the spatial configuration of the center o L

line that reflects its tortuosity, known as writhe number. In Wr2(n)=n?[{8(n)8(—n)}{ e(n)e(—n))

order to express the writhe numbéfr of a given configu- -~

ration of the ring in terms of Euler angles, one usually begins —(@(n)6(—n))?], (61)

with the Fuller equation for the writhe of a closed cuft8]: _
where we excluded modes with=0 andn= *+1, because

of the boundary condition8(0)=¢(1)=0. Using Eqs(43)
(toaX13) 5 (tost ta) for the correlation functions of Euler angles, we obtain the

Wr= i fﬁ ds, (579  mean-square amplitude of writhe fluctuations at wavelength
277 1+t03't3 r/n,

where X and- denote, respectively, vector and scalar prod- r2  A;+agn?
ucts. In the above expression, we made use of the fact that Wr2(n)= 5 > 5
the writhe number of a planar circular ring vanistés). T a88; (N°—1)

The above expression is valid as long®s- t3(s)|<1 in the _ _ _ . .
denominator, for all points on the contour of the ring. This Notice that the amplitude of writhe fluctuations diverges at

condition is satisfied in our work, since we only consider@s=0 and we conclude that twist rigidity plays an essential

small fluctuations about a planar undeformed ring that lies i€ in stabilizing the contour of the ring against writhe fluc-
the xy plane. tuations. The origin of this divergence is the same as that of

A ‘more physically transparent definition of writhe is the correlator 66(s) 6 6(0)) in Eq. (43) and has been dis-
cussed following Eq(44).

based on the existence of a topological invariant of a ring, _
called the linking numbef17] Lk. The total rotation of the For large wave vectoris)|>1 the mean-square amplitude

cross section as one moves around the contour of the ring i the nth mode of writhe fluctuations depends only on the
given by 2rLk where the linking number bending persistent lengths; anda,. The physical reason is
that on sufficiently small scales, the filament behaves as a
(58) straight incompressible rod whose properties do not depend
on the twist persistence lengsh (see Ref[14]). In the limit
. . . A;<azn?, the writhe-writhe correlation function for a
does not depend on the conformation of the ring and is theres—tlrai ﬁt r(,)d takes the form
fore a conserved quantity. In the absence of spontaneous 9 '
twist, both the twist and the writhe numbers of a planar cir-
cular ring vanish, antlk=_Lkg,=0. In general, sincek is a Wr3(q) = '
constant for a given topologysLk= sWr+ 6Tw=0, and a,a,0°>
expanding the integrand in E(6) in small deviations of the
Euler angles from their spontaneous values in the unpewhere we defined the wave vectqe27n/r. Eq. (63 is
turbed ring, the deviations of writhe and twist can be ex-valid for straight rods when 2/gq<a,, where the persis-

pressed as tence lengtha,, of the rod is defined by

(62

Lk=Tw+Wr,

(63
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1 1/1 1 wri(k) |t
Sl el (64) n)= - 71
a 2la a m(n) gl { Wr2(n) i
n

The crossover to a long wave-length regime in which writhe . ) )

modes become affected by twist rigidity, takes place at & valuating the product in Ed71) yields,

length scale¢,=r+as/a, and, therefore, such a regime ex- 5 5

ists for a ring of radius only if ag/a,<1. As a consistency a(n)=(—1)" mn?(n?+a)(1+ @) Ja (72)

check, notice that the straight rod case follows from the 2(n?—1)sinh(7a)
above expression fof; by substitutingr =, and since¢;
diverges in this limit, Eq(63) applies throughout the entire
range of parameters.

Substituting Eq(62) back in to Eq.(61) yields

(n*=2)A;—as

a(n)=
A;+n?%a,

The above expression far(n) can be used to calculate
all the even moments of writhe fluctuatiofedd moments

(oWr?)= : ; :
vanish due to the radial symmetry of the undeformed)ring

(65

. 1) r? . 1 11 r?
6 8x2/aa, |6 gg?/aas’
Notice that{ SWr?)~r2, in agreement with the scaling esti-
mates in Ref[18]. Indeed, since writhe is a quadratic form
of ¢ and 60 [see Eq.(59)], each of which has typical
fluctuations ofyr/a (a is a characteristic persistence length
the characteristic amplitude of writhe fluctuations dgvr
~rla.

The entire probability distribution of writhe can also be ) o .
computed. Beginning with the formal definition of this dis- SINC& moments wittk>2 do not vanish, it is obvious that

[

(SWrK) =K 22 m(N)Wrk(n),

n=

22 m(n)=1, k=24,...,. (73

the writhe distribution is not Gaussian. Furthermore, inspec-

tribution ) o
tion of Eq.(70) shows that the distribution has an exponen-
S tial tail at large SWr. For strongly writhing rings,
P(oWr)={( & Wr= 2 ine(n)é(—n)|), (66  (sWr?)Y2<|sWr|, then=2 term dominates the sum in Eq.

and using the exponential representation of éh&unction,
yields

= dk KSWr deQ(n)
:ﬁw%ew HIOL N defQ(n) + knv ]’

= dk . -~ o~
P(6Wn)= | Ee'k‘swr<ex;{k2 ne(n)(—n)

(67)
where the matrixy is defined as
0 -1 0
Yy=—1 0 O (68)
a
0O 0 O
Calculating the corresponding determinants gives,
» dk eik(SWr
P(6Wr)= — = (69
730277

[[2 [1+Wr2(n)k?]

This integral can be calculated by expanding the integran("lel

into partial fractions and we get

o

1 [SWr|
- nzz W(n)ZWr(n)CXF{ ~ Wr(n)

. (70

(70) and the free energy = — kg T In P(8Wr) is given by(up
to logarithmic corrections

F OWr

- 2\1/2 <
KT Wr(2) (OWrs)He<| sWr|<1.

for

(74)

The second inequalitysWr|<1, follows from the assump-
tion that the deviations of Euler angles from their equilib-
rium values, are small.

The writhe distribution function can be written in the
form

P(6Wr)= (75

o a.la.2 (77 a.la.z A]_)
p r S
Plots of the dimensionless functiqe(x,A;/a3) for A;/a;
=0.1, 5, and 20 are shown in Fig. 5. As intuitively expected,
the probability of large writhe fluctuations(large
ma;a,6Wr/r) decreases with increasing twist rigiditge-
creasingA; /a3), but the effect saturates féy; /az<0.1. The
shape of the curves bears close resemblance to the results of
recent computer simulatiori4 9.

VIl. ELASTIC RESPONSE OF THE RING

According to the fluctuation-dissipation theorem, the cor-
ation functions of the Euler angles determine the elastic
response of the ring to external distributed tordigs), ap-
plied along its contour. In the following, we use this infor-
mation in order to study the deformation of the ring by ex-
ternal torques and forces. Since we are not interested in rigid
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in Eqg. (77). The condition that the total torque due to the
external force vanishd€q. (76)] imposes additional condi-
tions on the forcé-(s). Upon some algebra, these conditions
can be written in the form,

2r 2mr
J Ft(s)ds=f sF;(s)ds=0, (81
0 0

whereF,(s) = F(s) - tgs(s) is the tangential component of the
force F. Inspection of Eq(80) shows that a small force with
my(s)=—F,(s)r cos@r), my(s)=—F,(s)rsin@gr) and
m5(s)=0 does not deform the ring. From E.8) we find
FIG. 5. Plot of probability distribution function of writhe f[hatFr(S) IS the radial component of the forcRa(s),.Whlle
DOGA, /as) VS X=(mya;a,/r) SWr for A, /a;=0.1 (solid line), 5 its tangential component |l§t(s)=_rd[Fr(s)JIQS. This ten- .
(cross, and 20(boy). sile force balances the contribution qf variation of the radial
force F,(s) along the contour of the ring and prevents buck-
éing until a critical value of the radial force is reached.
Equations(47) and(48), together with Eqs(77) and(80)
and inextensibility condition Eq(2), determine the confor-
mation of the deformed ring, under the action of small ex-
% dsM(s)=0. (76)  ternal torque and force. As an illustration, consider the de-
formation of the ring under external forc€sapplied to two
Gopposite points= /2 ands=37/2 on the ring contour,

body rotation, we assume that the total torque on the rin
vanishes, i.e.,

The deviations of the Euler angles from their unperturbe

values are given by F1(s)=F[8(s— m/2)— 8(s—37/2)]. (82
1 , L , Using Egs.(77), (78), and (80), we obtain the following
on(s)= KeT E § ds'(87n(s)on'(s'))M,;(s"), expressions for the resulting variations of Euler angles,
7
77 r2sin2y,( 1 1 S
) 80(s)=—F - hyl -1,
where 7,7’ =6,¢,, andM,, are the corresponding com- 27 \apkgT arkgT/ “\r
ponents of the torque. In order to calculate the elastic re- )
sponse to external forc&(s), applied to the center line of 5o(s)=F r h S 83)
the ring, we rewrite the work done by this forcay ¢ maykgT “\r )’
=¢dsF(s)-6x(s), in the form
50(8) Frzsinzwo 1 1 )h (s)
27r S)=— - Yl ]
W= 3& dsm(s)-dts(s), where m(s)=f ds'F(s"). 2m  \agksT  aikgT '
° (78) where

Since we are not interested in translation of the ring as a (X)= dhy(x) _ i 4k(— 1)
whole, we assume that the total force acting on the ring " * dx 1 (4k2-1)2
vanishes$dsF(s) =0, which means that the functian(s)

sin(2kx) = — gx COSX,

is continuous as=0, i.e., m(2#r)=m(0)=0. Using Eq. c (=K -
(22) we can recast the expression for the work done by the h,(x)= 2 Tsin(ka)zx— Esinx, (84
force, Eq.(79), in the form k=1 k(4k—1)
o (—DX
W= 3[§ ds{[—my(s)sin(s/r)+my(s)cogs/r)] hy(x)= —2;1 mcos{ZkX)
X & @(s)—mz(s)56(s)}. (79 ™ T
=1- Zcosx— ZX sinx.

Inspection of this equation shows that in the presence of
external force we have to modify the expressions for therhe above series are calculated in the intefxbk 7/2. Us-

moments ing the periodicity conditionh;(x+ ) = h;(x), the functions
) h;(x) can be extended outside this interval. Inspection of Eq.
M ¢(S)— M g(s) —my(s)sin(s/r) +my(s)cogs/r), (14) shows that the persistence lengthsare inversely pro-
portional to temperature. Since temperature enters(&s).
M 4(S)— M »4(s) —my(s), (80) only in combinationsa;kgT, it cancels from the above ex-
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position, Xo(S). We expresssx(s,t) in terms of its projec-
tions on the triad vectors of the undeformed ritgy(s),

5x(s,t)=§k‘, SX(8,)toi(S). (85)
b)
We proceed to write the Langevin equations that govern the
dynamics of fluctuations of the center liné, and the dy-
namics of angular fluctuations of the cross section about the
center line,8¢. Some care should be exercised in deriving
the Langevin force from the expression for the elastic energy
Eq. (13) since up to this point, we have used the inextensi-
a) bility constraint Eq.(2). In order to avoid complications as-
sociated with the introduction of rigid constrairfg0], we
FIG. 6. Plots of deformation of ribbonlike ringsvith a,/a; replace the strict inextensibility conditionddxs/ds

=104 bg/ compressional forcesee arrows (a) ,=w/2 and(b) = w0y0%, — 010X, (See Appendix A by an energy penalty
l//oz 107 .

- 2
pressions and can affect the results only through temperature Uext:kB_TaexJz ' s( doxs — WXy + WXy | .
dependence of elastic moduli and moments of inertia. 2r? 0 ds

Equation(83) shows that the deformation of the ring un- (86)

der the action of the force given in E@®2), does not depend . . o .
on twist rigidity as. Therefore, such external forces do not | € Persistence lengi,, describes the rigidity of the fila-

produce any twist and can only lead to a bending of the ringment with respect to local compression and extension. The

This result remains valid for more general distributed forcedOt@l elastic energyo;=U+Ue, is the sum of contribu-

on the center line, provided they act only in the plane of thdions of bending and twist modes E(7) and extensional
undeformed ring. Inserting the expressions for the deviation§10des Eq.(86). We will use the above expression for the
of the Euler angles Eq$83) and (84) into Eq. (15), we find t_otal energy of an e>§te_nS|bIe fll_ament in the _Langevm equa-
that Sws=0, and consequently, the variation of anglean tions, and _take the limit of an |next§n5|ble filameat {;/r

be expressed in terms of the conformation of the center ling”>) ©nly in the end of the calculation.

(angled), asrd[ 8 y(s)]/ds= 6 6(s). Since the sum of twist "€ Langevin equations are

and writhe numbers is a topologically conserved number,

writhe is invariant under such deformations. Idzb‘x(s,t) +s dox(s.t) U ot

Figure 6 shows the effect of spontanegosnstant angle m dt? dt ol ox(s,1)] fsn). &9
of twist, ¢, on the response of a ribbonlikaf>a,) ring to
compressional forces applied at opposite points of the center 425 y(s,t) doy(s,t) U o1
line. The forces, shown by arrows, lie in the plane of the | > TSy at + S0 P(s.0] =&,(s,1).
undeformed ring. In the case of a ribbon with a short axis dt ' (88)

lying in the plane of the undeformed ring,= 7/2, the ring

remains planar in the course of deformatidfig. 6@]. A Here,mand| are mass and moment of inertiaith respect
ribbon with a short axis lying normal to the plane of the ring, o the center lingper unit length and ands,, are transla-
tho—0, undergoes three dimensional deformafibiy. 6b)].  tional and angular friction coefficients. The fluctuation-

At first sight, Fig. b) appears to suggest that the ring is gjssipation theorem relates the amplitudes of the random
twisted, in contradiction with the previously made statementg cesf and ¢, to these friction coefficients,

that its configuration is twist free. However, as is evident

from Eq. (15), for the density of twist,dwz=dé8 ¢/ds (fi(s,1))=0,

— 6 0/r, and from the discussion in Sec. VI, the mathemati-

cal definition of the twist of a filament with nonvanishing <fi(s,t)f,-(s’,t’)>=2kBT95ij5(5—3’)5(t—t’), (89
spontaneous curvature =) involves both the rotation of

the cross section about the center line and the curvature of (flp(S,t)):O,

the center line itself. The fact that the two effects cancel

exactly in Figs. 63 and @b) is a consequence of the fact (Eu(sDEYS" 1)) =2kpTs,8(s—s")s(t—t"). (90

that the forces act entirely in they plane and do not produce . ) )
a component of torque along the contour of the ring, whichn Writing the above equations we neglected hydrodynamic
could give rise to twist. interactions and therefore the treatment is analogous to the

Rouse model of polymer solution dynami&].
Using the relation between the deviations of the coordi-
nateséx and those of Euler angle§6, 6 ¢, and 8 ¢ (see
Consider small instantaneous deviatiahgs,t) =x(s,t) Appendix A) and neglecting rigid body translation and rota-
—Xo(s) of the center line of the ring from its stress-free tion of the ring, we rewrite the above Langevin equations in

VIll. DYNAMICS
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terms of the Fourier components of the deviations of Euler Taking the Fourier transform of E¢B9) (Appendix B
angles from their equilibrium valudsee Eq.(24)], with respect to the frequenay, we find the two-time corre-
lation function of the Fourier components of Euler angles,

n o~ sU ~
avn(n,t)=—Lﬂ(n)m+§”(n,t), (91) (n(n,t)n’(—n,0)>
1
(€,(n,0))=0, = m{[/\z(n)gl(n,t)—Al(n)gz(n,t)]
(Ng,](n,t)z,],(—n,t’))zZkBTcSW,g,]L,?(n)é(t—t’).(92) X (m(n) 7' (—n)—keTL,(n)
R X[gl(n:t)_QZ(n!t)]57]7]’}v (97)
The time derivative operators,, associated with the three ) ]
Euler angles are, where g, (n,t) describes temporal decay of correlations of
normal modes with wave vectorz/r [g(n,0)=1], and
e d> d . d? d where (7(n)%’(—n)) is the previously calculated equal-
X= A= =M S and  a,=I FERRITS time equilibrium correlation functiofisee Sec. IV,
(93) In the inertial limit(i.e., for modes with inertial time scale

shorter than viscous relaxation tilpe4mA . (n)>s?, the
where the corresponding friction coefficients are=s,=s  functiongy(n,t) describes damped oscillations with charac-
ands,, . The elastic energy that appears in the Langevin Eqderistic frequencyw,(n),
(92), is given in terms of the amplitudes of the Fourier

modes in Eq(26). Conveniently, the matrix of kinetic coef- t) = t+ : t ;{_ t_g)
ficientsL is diagonal in the Euler angle representation, 9u(n,t)=| cosw(n) mek(n)smwk(n) ex 2m)’
(98
Ly(n)=n?%/r?, L,(n)=(n*-1)%(n*+1)r?
Ag(n)  §?
2 —3 —_——
and L,(n)=1/2 (94) wp(n)= - et (99

In the following, we proceed to solve the Langevin equa- - _ _ _ .
tions and obtain explicit expressions for the dynamic corre] N€ characteristic relaxation time isv2s, independent of
lation function of writhe fluctuations. We focus on this cor- the wavelength of the mode. At short time¢ssm/s,
relator since it is an integral characteristic of the ring and is ——
therefore simpler than th% two-point correlation func%ions of g(n,t)=cog vA(n)/mt]. (100
Euler angles, which depend on the separation between the
points. Although the general solution of the linear equation%e
can be obtained, we will assuntas it is often done in the
literature[18,21,23) that the relaxation of the twist angle

In the dissipative limit #nA (n) <s? the functiong,(n,t)
scribes pure decay of correlations, with characteristic
times 74(n) and »(n),

is much faster than that of the anglésnd¢. Consequently, r t T t
we can minimize the energy with respect@n,t) ar.1d ex- gk(n,t) P—— exp{ ) il R |
press it in terms of)(n,t) and¢e(n,t). With this substitution, (101

the (3x3) matrixQ(n) in 8(n,t), e(n,t), 7%(n,t) space Eq.

iy - 2
(27) is reduced to a (X2) matrixQ'(n) in 8(n,t), ¢(n,t) _ S S oom
space, ’ Ao T Nz Adm 42

! azA;(n®—1)*  Agagn’(n®—1) In the limit of negligible inertiam— 0 we getr,(n)—0 and
Q'(n)= asn’+A, Asazn3(n?—1) (asA,n?+asa,)n?)’ the relaxation can be described by simple exponential decay,
99 gk(n.=ex — tA(n)/s]. (103

As shown in Appendix B, the solutions of the Langevin The d . ith lation function is derived in A
equations can be expressed in terms of the eigenvalues € dynamic writhe correiation function IS derived in Ap-

A A(n) of the matrixP(n) of the linear form pendix B:

SsU ~, ) (SWr(t)sWr(0))= Wr?(n,t)
L,(nN)—=——=2> P, (M7 (N, 77 =0¢ 01
on(—nt) -
96
= 2 WrAmgi(n,t)gx(n,t),
that appears in the Langevin E@1). Explicit expressions nFost
for these eigenvalues are given in Appendix B, EBR). (104
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FLUCTUATING ELASTIC RINGS: STATICS AND DYNAMICS PHYSICAL REVIEW E64 011909
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) . . ) FIG. 8. Plot of dynamic correlation function of writhe fluctua-

FIG. 7. Plot of dynamic correlation function of writhe fluctua- tions ( swr(t) sSWr(0)) vs timet (in units of sr2/zkgT), for a
tions (SWr(t) SWr(0)) vs timet (in units ofsr?/wkgT), foraring ripponlike ring with persistence lengtiz =a;=2r and a,=20r
with a C|rcul_ar cross section and p2e23|stence lengths a;=as (o= ml4), in the inertial range #mkgT/s2r2=10. Plot of the
=2r, in the inertial range 2mkgT/s"r*=10. Plot of the Fourier  poyrier transform of the correlation functions vs frequencyin
transform of the correlation functions vs frequenay(in units of nits of kgT/sr2) is shown as an inset in the upper-right-hand
wkgT/sr?) is shown as an inset in the upper-right-hand side of theside of the figure.
figure.

o . dephasing of the oscillatory contributions of a large number
where the equilibrium mean-squared amplitude of fluctuagf modes. In the frequency domain, there is no peak at
tions of writheWr?(n) is given in Eq.(62). In the limit of  —( and the peak amplitudes have a nonmonotonic depen-
negligible inertiam—0 we substitute Eq(103) for gi(n,t)  dence on the frequency.
into Eq(104), and find that the writhe correlation function In F|g 9, we p|0t the writhe correlation function in

for moden decays exponentially with time the dissipative regime where inertia is negligible
2/ N N2 e () 2mmkgT/s?r2=10"3 for ribbonlike rings with different
Wri(n,)=Wri(n)e : (1059 pending and twist rigidities. The amplitude of writhe fluctua-
- . L tions is smallest for a ribbon whose shorter axis of inertia is
The characteristic decay timgn) is given by normal to the plane of the riNgee Fig. @)]. The amplitude
3 5 ) increases by more than a factor of two when the shorter axis
(n)= sr n“+1 agn”+A; . of inertia lies in the plane of the ringsee Fig. €a)]. Twist
kg T n%(n>-—1)? (a;+ay)azn’+Aas+aja, rigidity decreases the fluctuation amplitude but the effect is

(106) rather weak. Since inertial oscillations are completely sup-
pressed in this overdamped regime, the correlations decay
In the short wavelength limih>1 only the sum of bending monotonically with time. The curves exhibit fast short-time
persistence lengthes; + a, appears inr(n). Indeed, on small relaxation, followed by an exponential decay, in qualitative
scales, the filament behaves as a straight inextensible rajreement with numerical simulations reported in R&8].
whose properties do not depend on the twist persistencAn analytic expression for the time dependence of the cor-
lengthas, or on the spontaneous twist anglg. relator at short times can be derivesee Eq.(B18) in Ap-
In Figs. 7 and 8, we plot the writhe correlation function as

a function of time measured in units ef?/wkgT, in the
inertial regime, for 2rmkgT/s%r2=10. Its Fourier transform 0.01

plotted as a function of the frequenaymeasured in units of o
2 - . . . . A o}
wkgT/sr<, is shown in the inset, on the upper-right side of S o)
the figure. In Fig. 7, the parameters correspond to a circular = 00
cross section and identical persistence lengihs; a,=as; 2 %
=2r. Oscillatory decay of writhe correlations as a function § <><> °s
of time is observed, but the correlation remains always posi- T B0 o)
tive. A small number of fundamental frequencies can be de- +++ <><><> %0,
tected in the oscillatory pattern, and identified with peaks te, + %o 066 ®oo o)
observed in the frequency spectrum. The amplitudes of these 7 0‘;”* + + 4 09.029 2R QO{Z}
t 8

peaks decrease monotonically with the frequency, and the
largest peak is at»=0. The case of an asymmetric Cross g, 9. plot of dynamic correlations function of writhe fluctua-
section and dominant bending rigidity; =az=2r and a, tions (SWr(t) SWr(0)) vs timet (in units of sr2/7kgT), for rib-
=20r (o= m/4) is shown in Fig. 8. The correlation function ponlike rings in the dissipative rangerksT/s2r2=10"3: The
decays rapidly to zero and, at later times, oscillates betweeparameters arel,=0 and a;=2r, a,=20r, a;=2r (cross, a,
positive and negative values. Since fexm/s, dissipationis  =20r, a,=2r, a;=2r (circle), and a;=20r, a,=2r, az=10r
negligible, the fast initial decay of correlations is the result of(diamond.
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pendix B|. The predicted([ sWr(t)— sWr(0)]?)t¥ de- inspection of the elastic energy, E7), shows that when
pendence of the writhe correlation function and the fact that;=0, fluctuations withds 6/ds+ 8 ¢/r=0 have zero en-
it depends only on the bending rigiditya{ and a,), are  ergy cost and, since in the absence of twist rigidity the angle
direct consequences of the observation that at short times,, can always adjust itself to satisfy the conditiony=
the relaxation is dominated by straight rod contributions to—rd s¢/ds, there is no elastic energy penalty for out-of-
the spectrunf 7(q)<1/q*]. lane fluctuations of the ring and the amplitude of such fluc-
The above results can be directly applied to the study otyations diverges even if the bending rigidity remains finite.
deformation of macroscopic rings by external forces andrherefore, wormlike chain theories in which only bending
torques. Unlike the case of microscopic filaments, where disrigidity is taken into account, cannot model the spatial con-
sipation dominates inertia and only overdamped behavior iformation of fluctuating rings.
expe_cted, inertial effects play_an i_mportarjt role in the dy- \we found that a crossover length scdle=r\az/ay, ex-
namic response of macroscopic objets this reason, they  jsis, pelow which straight rod behavior dominates and writhe
were included in the preceding analysificcording to the  of the center line and twist of the cross section about it are
f!uctuat|on—d|SS|pat|on theorem, dynamic corre.latlon func'd_ecoupled, and above which spontaneous curvature becomes
tions of Euler angles can be treated as generalized suscepfinportant and twist affects the three-dimensional configura-
bilities that determine the response of the ring to externallyjons of the center line of the ring. In this context, we would
applied torques and forces. The time-dependent generalizgge 1o propose the as yet unproven but plausible conjecture,
tion of the static relation between deformatiGin terms of  hat the existence of this crossover does not depend on the
the deviation .of the Euler anglles from their equilibrium val- topology of the ring and is characteristic of filaments with
ues and applied force Ed(77) is spontaneous curvature in their stress-free state.
1 q Although the main focus of this work is on the statistical
- / = Pl +1 mechanics of fluctuating rings, we used the fluctuation-
on(s,b) kgT _mdt ; 3§ ds dt’ (on(s,H) 7' (s",1)) dissipation theorem in order to predict mechanical response
to external torques and forces, and showed that the deforma-
XM, (s",t"), (107)  tion of ribbonlike rings depends, in an essential way, on the
) orientation of the cross section in the stress-free state. Fi-
where the moments! due to external forces, are given by oy we derived the Langevin equations that govern the
Eq. (80). The relaxation of the deformation following the gynamics of fluctuating rings, and calculated the two-time
release of external moments at tie 0, M(s,1)=M(8)f  correlation function of writhe fluctuations. Depending on the

(=), fort>0 is given by values of the parameters, one can move from an inertial re-
gime where relaxation is accompanied by temporal oscilla-

Sn(st)= 1 > é ds'(Sn(s,t) 87’ (s',0)M,.(s'). tions, to a non-oscillatory, purely dissipative regime. In the
kgT ' K dissipation dominated range, the relaxation at short times is

(108 determined by bending rigidity only. This agrees with the
expectation that short-time relaxation is dominated by small
IX. DISCUSSION scale, straight rod behavior. At longer times, the decay of
writhe correlations depends on both bending and twist rigidi-
In this paper, we presented the statistical mechanics cfes. While inertial effects are not expected to be important
fluctuating rings. We derived analytical expressions for Vari-for microscopic ObjECtS such as small p|asmids, our dynamic
ous static properties of such rings, including two-point cor-response functions can describe the relaxation of rings of
relation functions of Euler angles, the correlation function Ofarbitrary mass and size, fo||owing the cessation of externa”y
tangents to the ring, rms distance between points on the ringpplied forces and torques.
contour, radius of gyration, and probability distribution func- ~ we would like to comment on the limitations of the ap-
tion of writhe, as a function of persistence lengths associategroach presented in this paper. The domain of applicability
with bending and twist deformations of the ring. We found of our theory is limited to the weak fluctuation regime, in the
that the amplitudes of fluctuations of the Euler anglesind  sense that the deviations of the Euler angles from their val-
¢ diverge in the limit of vanishing twist rigidity. We would yes in the undeformed ring, must be sufficiently small. Al-
like to emphasize that the situation differs from the case though, in principle, our general formalism is applicable to
straight filaments for which the twist densitpwy®  rings with arbitrary spontaneous twist in their stress-free ref-
=do y/ds depends only on the fluctuations of the Eulererence state, the analysis of this problem meets with consid-
angle . For such filaments, vanishing twist rigiditya{  erable mathematical difficulties and is the subject of ongoing
=0) implies that there is no energy penalty for twisting thework. Finally, we would like to emphasize that since our
cross section about the center line, but the presence of bentheory is based on the linear theory of elasticity of thin rods,
ing rigidity (a;,a,# 0) suffices to suppress spatial fluctua- all persistence lengths and radii of curvature are assumed to
tions of the center line about its straight stress free configube much larger than the diameter of the filament that serves
ration. Thus, if we are only interested in the statisticalas a small scale cutoff. Consideration of microscopic physics
mechanics of the spatial conformations of the center linepn length scales smaller than this diameter requires the in-
accounting for bending rigidity suffices to provide an accu-troduction of additional model assumptiofeee Refs[23—
rate description of straight fluctuating filaments. For rings,25]) and is beyond the scope of this paper.
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After this paper was submitted for publication, we learned
about a related study of thermal fluctuations in DNA plas- a,(nt)+ —
mids in which the writhe distribution function was also cal- op(—n,t)
culated[26]. This work is complementary to ours: while we R R . .
assume that the equilibrium stress-free state of our filamerWherea anda,, are defined in Eq(93) and
is that of a planar untwisted circular ring, R¢R6] deals
with filaments with straight untwisted stress-free state. Con-
ceptually, the ring is then formed by bringing the ends to-
gether and sealing them, with or without the addition of
twist. Since such rings have locked-in internal stresses, the c(n)=—(sinyg, —COSYy,in). (A7)
two procedures are nonequivalent in general.

=E,(nt), (A6)

AexKp T~
lu‘(nvt) = r—ZX(n’t) : C(n),

In the limit ag,—>, wx(n,t) can be considered as a
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APPENDIX A: DERIVATION (€,(n0)=0, (E,nt)E(—nt"))=25keTo(t—t").
OF LANGEVIN EQUATIONS (A9)

&1: _(50 COS(/I0+ 5(,0 Sin lﬂo)to3+ 5l/lt02, and (92)

Sty= (8 0'sinyo— 60 CoSo)tya— 8 Itoy, (A1) ~ APPENDIXB: SOLUTION OF LANGEVIN EQUATIONS
. In order to find the solution of the Langevin equations, we
Otg=— (6 0sinyo— S¢ Cosyg)toxt (8 6 COSyg first calculate the eigenvalues and eigenfunctions of the ma-

+ 8¢ singo)tor, trix (see Eq.(96) for its definition),

N _— mkgT n(n?—1)
where the vectorsy are defined in Eq(12). Substituting P(n)= B
Egs.(Al) into the inextensibility condition E¢2) we obtain r3 agn?+A;
the following equations for the deviatiofx(s) of the posi-

2_ 2
tion vector of a poins on the ring contour, from its value in Asag(n”~1) Agagh
the undeformed state, % (n2—1)2 n2—1
Azaz————— (Azagn?+ ajay)———
déxs n“+1 n“+1
ds  ©020%1F @016X;=0, (A2) (B1)
dox, Eigenvalues of this matrix have the form
-——+ (1)015)(3_ (1)035)(1: d0sin l,bo_ 1) () Cosl//o,
ds mkgT n?(n?—1)>2
B
(A3) AiAn)=
’ 2r3  n?+1
déx;q )
E‘F(Doz&(g_woga(zz 500081,/104-5(,03”’1 l,ll'o. X(a1+ az)a3n2+Ala3+ alaziA (BZ)
(A4) asn?+A, ’
Equqtipn(AZ) is the linearized form of the inextensibility A?=[(a;—a,)azn’+A;a;—a;a,]?
condition, and Eqs(A3) and (A4) relate the deviations of 5 _
Euler angles to those of spatial positions. +4n%ayas(a; —a,)(a;—as)sir .

Fourier transforming Eq€$87) and(88), yields the Lange-

vin equations for the Fourier componen@) and (n), The eigenvalues\(n) vanish whenn=0,1. These modes

are associated with rigid body rotations of the ring and are

sU not considered further below. In the linjit|>1 both eigen-

ax(n,t)+ ————+u(n,t)c*(n)=Tf(n,t), (A5) Vvalues increase with the fourth power af, A(n)
oX(—n,t) =mkgTa,n*/r3. This q* dependence of the eigenvalues (
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=2mmn/r is the wave vector corresponding to i mode is Calculating the correlation functions of Euler angles, we
characteristic of bending fluctuations of straight rods, in acget
cord with the expectation that small-scale fluctuations of a

ring are indistinguishable from those of a straight rod. 77k( 77'(— )
The matrixP(n) becomes diagonahnd the angle® and (7,(N 7., (—n))=2kgTs 2 —k2 (B9)
¢ become decoupledin the case of a circularly symmetric |6¥ +A(n)]

cross sectionA3;=0), whenyy=0 or #/2, and in the limit

asz—0. In all of these cases, the modg(n) describes both wheren, n’ = 6,¢. In the time domain this gives the follow-
fluctuations perpendicular to the plane of the ring and twising expression for the dynamic correlation functions of the
fluctuations, and the mod&,(n) describes fluctuations in Fourier transforms of Euler angles,

the plane of the ring. Sincd (n)—0 whenaz—0, twist

fluctuations destroy the circular shape of the ring in the ),]k( n)
wormlike chain model, where twist rigidity is not taken into (n(n, )7’ (—n,0))= kBTE ——a(n,t),
account. Ak(n)
The eigenvalues take a particularly simple form iy (B10)
=0,
where
wkgT n?(n?—1)%a,a,
Ag(n)=—3 > - 25A(n) (= dw coswt
r asn“+a; gi(n,t)= 5 5
™ 0 [A(N)—Mo ] +s“w
kg T N?(n?>—1)%a, (B11)
Agx(n)=— 5 . (B3) _ _
r n“+1 The functiong,(n,t) describes temporal decay of correla-

tions of normal modes, with wave vectorr®/r. One can
Since the matriX(n) Eq. (B1) is not symmetric, it has verify that fort=0, integration givegy,(n,0)=1, indepen-
different right and left eigenfunctions. We denote the rightgent of m ands. Instead of calculating the elgenfunctlons
e|genfunct|ons corresponding to eigenvaluag(n), by k(n) we notice that the combmatlonsnk(n)nk
() ={6i(n), ‘Pk(”)} (Wherek 1,2). Left eigenfunctions  (—p)/A,(n) in the above expression, can be evaluated using
can be written a97k( n)L Y(n). Since the matri®(n) is  the previously derived expressions for the equilibri(equal

real, we havenk( n)= nk(n) For eachn#0,=1, the time)correlators(?;(n)?y’(—n)),andthe normalization con-

above eigenfunctions are normalized by conditions: ditions, Eq.(B4). Substituting these expressions into Eq.
(B10), we arrive at Eq(97).
== We now turn to writhe fluctuationgsee Eq(59)],
> LA mdmm(—n)=dy,

_ _ OWr(t)= 2 in 5o gDw(n)elwtf_e (—n)e th
; (M) (=) =L, ()8, . (B4) @12

Expanding the matri®(n) over its eigenfunctions we find: and proceed to calculate the dynamic correlation function of
these fluctuations,

Py (M=20 A () p(—mL H(n).  (BS)
K (SWr(t) SWr(0))= > lWrZ(n,t), (B13
n#0,=

The solution of Eq(91) can be found by Fourier trans-
forming it with respect to the time, and substituting Eds. \yhere the contribution of mode is
(96) and (B5). This yields

77k( ) Wrz(n,t):kéTznzf d—wf dico{(aﬂrw’)t]
1u(N)= E A Z (N E,o(n),  (B6) 27) 2m

X[(B,(—n)O_ (M) @y (M@, (—1N))

a,=—Mmo’+isw, B7 ~ ~ ~ ~
%= —Ma™tise (B0 (B~ % () (N7 ()],
where the correlators of the Gaussian random force are (B14)
(Enw(n))=0, (E,,w(n)Ng,,,,w(—n)>=2kBTgLn5W. Substituting Eq.(43) for the correlation functions of Euler

(B8)  angles yields,
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2 gk(n,t)gk!(n,t) 2

Wr2(n,t)=k3T2n? ([oWr(t)— 6Wr(0)]%) =

k' Ag(N) Ay (n) m2a,a,83
X[0(N) O — 1) @y (M) pier(— 1) o Agtagn? Lt
_ _ _ I — 2 2
— (Mo~ M e (N G (—M)]. (B15) n=2 (n°~1)
(B17)

The only nonvanishing contributions to the sum in Bg{L5)
arek=1k’'=2, andk=2k’=1, and both have the same
value. As a result, we find that the contribution of tivéa

At small timest< 7(2) this sum is dominated by terms with
n>1. Replacing the sum by an integral we find

mode to the dynamic correlation function can be recast in the 2 3
form ([oWr(t)— 8Wr(0)]?) = — r —)
T alaz 4
Wr2(n,t)=Wr2(n)g,(n,t)g,(n,t), (B16) 14
7TkBT
. . X 3 (artaxt|
where Wr?(n) is the mean-squared amplitude of théh sr
mode of writhe fluctuations in equilibrium, calculated earlier (B18)

in Eq. (62).

Finally, we would like to comment on the short-time be- wherel is the gamma function. The characteristic relaxation
havior of the correlation function in the dissipative regime.rate kg T(a;+ a,)/sr® depends only on the bending rigidity
Using Eq.(105 we find of the ring.

[1] The Encyclopedia of Molecular Biologgdited by J. Kendrew [13] B.C. Coleman, M. Lembo, and |. Tobias, Meccang&h 565

(Blackwell, Oxford, 1994 (1996.
[2] H. Qian and J.H. White, J. Biomol. Struct. Dyn6, 663  [14] C. Bouchiat and M. Mezard, Phys. Rev. L&, 1556(1998.

(1998. [15] F.B. Fuller, Proc. Natl. Acad. Sci. U.S.A8, 815(1971); 75,
[3] E.E. Zajac, Trans. ASME, Ser. C: J. Heat Trans3dr 136 3557(1975.

(1962. [16] We would like to thank I. Tobias and A. Maggs for bringing
[4] P.-G. deGenneScaling Methods in Polymer PhysitSornell this fact to our attention.

[17] J.H. White, Am. J. Math91, 693 (1969.

[18] A.C. Maggs, Phys. Rev. Lett85 5472 (2000; e-print
cond-mat/0009182.

[19] D.A. Beard and T. Schlick, J. Chem. Phyd.2 7323(2000.

[20] M. Doi and S.F. EdwardsThe Theory of Polymer Dynamics

Univeristy Press, Ithaca, 19¥9

[5] A.A. Podtelezhnikov and A.V. Vologodskii, Macromolecules
33, 2767(2000.

[6] N.L. Goddard, G. Bonnet, O. Krichevsky, and A. Libchaber,
Phys. Rev. Lett85, 2400(2000. . .

. (Oxford University Press, Oxford, 1986

[7] S. Panyukov and Y. Rabin, Phys. Rev. L&5, 2404(2000; [21] R.E. Goldstein, 'I)'I.R. Powers, and C.H. Wiggins, Phys. Rev.
Phys. Rev. E62, 7135(2000. . Lett. 80, 5232(1998.

[8] Y. Rabin and S. Panyukov, Phys. Rev. L‘?m be published [22] J.D. Moroz and P. Nelson, Macromoleculgs 6333(1998.

[9] A.E.H. Love, A Treatise on the Mathematical Theory of Elas- [23] T.B. Liverpool, R. Golestanian, and K. Kremer, Phys. Rev.

ticity (Dover, New York, 1944 Lett. 80, 405 (1998.
[10] J.J. KoenderinkSolid ShapgMIT Press, Cambridge, 1990 [24] z. Haijun, Z. Yang, and O.-Y. Zhong-can, Phys. Rev. L8,
[11] P.M. Chaikin and T.M. LubenskyRrinciples of Condensed 4560(1999.
Matter Physics (Cambridge University Press, Cambridge, [25] R. Golestanian and T.B. Liverpool, Phys. Rev.68 5488
1985, Chap. 6. (2000.
[12] I. Tobias, B.C. Coleman, and M. Lembo, J. Chem. Phy5 [26] I. Tobias, Biophys. J74, 2545(1998; J. Chem. Phys113
2517(1996. 6950(2000.

011909-19



