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Fluctuating elastic rings: Statics and dynamics
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We study the effects of thermal fluctuations on elastic rings. Analytical expressions are derived for corre-
lation functions of Euler angles, mean-square distance between points on the ring contour, radius of gyration,
and probability distribution of writhe fluctuations. Since fluctuation amplitudes diverge in the limit of vanish-
ing twist rigidity, twist elasticity is essential for the description of fluctuating rings. We discover a crossover
from a small scale regime in which the filament behaves as a straight rod, to a large scale regime in which
spontaneous curvature is important and twist rigidity affects the spatial configurations of the ring. The
fluctuation-dissipation relation between correlation functions of Euler angles and response functions, is used to
study the deformation of the ring by external forces. The effects of inertia and dissipation on the relaxation of
temporal correlations of writhe fluctuations, are analyzed using Langevin dynamics.
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I. INTRODUCTION

Small circular loops of DNA~plasmids! play an important
role in biological processes such as gene transfer betw
bacteria and in biotechnological applications where they
used as vectors for DNA cloning@1#. The simplest minimal
model that captures both the topology and the physical p
erties of such an object is that of an elastic ring that has b
bending and twist moduli. This model was used in a rec
study of writhe instability of a twisted ring@2,3#. However,
since this work focused on the mechanical aspects of
problem and did not consider the effects of thermal fluct
tions, it cannot be directly applied to plasmids and oth
microscopic rings. The consideration of fluctuations is i
portant since they dominate the physics of macromolec
and determine their statistical properties, such as chara
istic dimensions, dynamics in solution@4#, kinetics of loop
formation, and dissociation of short DNA segments@5# and
molecular beacons@6#. Recently, we developed a theory
fluctuating elastic filaments, with arbitrary spontaneous c
vature, torsion, and twist in their stress free state@7#. Since
topological constraints were not taken into account in t
paper, our analysis was limited to open filaments and co
not be directly applied to the study of closed objects t
have the topology of a ring.

The present paper is an expanded version of a lette
which we presented the solution of this problem for wea
fluctuating rings@8#. The analysis of Ref.@8# is generalized
to the case of ribbonlike filaments, with two principal axes
inertia in the cross-sectional plane. We calculate the corr
tion functions of Euler angles, and use them to obtain ot
statistical properties of fluctuating rings, such as me
square spatial distance between points on the ring cont
and the radius of gyration. Analytical expressions for t
complete probability distribution function of writhe fluctua
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tions and for all its moments, are derived. A crossover len
scale is found, below which straight rod behavior domina
and the twist of the cross section with respect to the ce
line is uncorrelated with the conformation of the center lin
Above this length scale the nonvanishing spontaneous cu
ture of the ring begins to play a role and twist rigidity affec
the three-dimensional conformation of the center line of
ring. The correlation functions of Euler angles are used
predict the mechanical response to external torques
forces, and to examine the effect of spontaneous orienta
of the cross section, on the deformation of ribbonlike rin
The dynamic correlation function of writhe fluctuations
calculated in both the inertial and the dissipative regimes
the former case, oscillatory decay of the correlations w
time is observed. When inertia is negligible, the relaxation
monotonic and there is a transition from a short-time regi
in which the relaxation rate depends only on the bend
rigidity, to a long-time regime where the decay is affected
both bending and twist modes.

In Sec. II we present the generalized Frenet equations
describe the conformation of a filament, and introduce
elastic energy that governs its fluctuations about the str
free state. We express the curvature and torsion param
that characterize this conformation, in terms of the Eu
angles, and write down the elastic energy as a quadratic f
in the deviations of these angles from their values in
undeformed ring. The topological constraints correspond
to a ring are introduced as integral conditions on the fluct
tions of the Euler angles, and result in the vanishing con
bution of some of the lowest Fourier modes to the fluctuat
spectrum. In Sec. III we diagonalize the elastic energy,
tain the spectrum of normal modes, and discuss their ph
cal meaning. In Sec. IV we use this eigenmode expansio
calculate the correlation functions of Euler angles. We stu
the dependence of the correlators on physical parame
such as bending and twist rigidities, and on the spontane
orientation of the principal axes of inertia of the cross sect
with respect to the plane of the ring, and discuss the ge
etry of typical configurations of the ring. In Sec. V we deriv
explicit expressions for the orientational correlation functi
of the tangents to the ring, root-mean-square~rms! distance

ics
ia;
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between points on the ring contour, and the radius of gy
tion, in terms of correlation functions of Euler angles co
puted in the preceding sections. In Sec. VI we express
writhe and twist numbers that characterize an instantane
configuration of the ring, in terms of Euler angles. We th
use the correlation functions of Euler angles to calculate
probability distribution function of writhe fluctuations an
study its dependence on the bending and twist rigidities.
find that the amplitude of writhe fluctuations exhibits a cro
over from a small-scale, straight-rodlike regime in which
twist of the cross section has no effect on the spatial con
mations of the center line, to a large-scale regime in wh
the two types of fluctuations become strongly coupled du
the spontaneous curvature of the ring. In Sec. VII we use
fluctuation-dissipation theorem that relates the previou
calculated equilibrium correlation functions of Euler ang
to the response functions, in order to study the linear
sponse of a ring to small externally applied forces and m
ments. We show that the deformation of a ribbonlike ri
depends in an essential way on the orientation of its cr
section in the undeformed reference state. In Sec. VIII,
derive the Langevin equations that describe both the ine
and the dissipative dynamics of Euler angles, and use t
to study the effects of bending and twist rigidities and of t
orientation of the cross section of the ribbon, on the f
quency spectrum and temporal relaxation of its writ
modes. Details of the derivation of the Langevin equatio
and the calculation of the dynamic correlation functions,
given in Appendixes A and B, respectively. In Sec. IX w
summarize our main results and discuss the domain of va
ity of our theory.

II. GENERAL APPROACH

The general theory of fluctuating noninteracting elas
filaments was presented in Ref.@7#. To each points one
attaches a triad of unit vectors$t i(s)% where t3(s) is the
tangent vector to the curve ats, and the vectorst1(s) and
t2(s) are directed along the axes of symmetry of the~in
general, noncircular! cross section. The spatial conformatio
x(s) of the filament is given by the generalized Frenet eq
tions

dt i

ds
52(

jk
ei jkv j tk , ~1!

together with the inextensibility condition,

dx/ds5t3 , ~2!

whereei jk is the antisymmetric unit tensor and the para
eters$v j (s)% characterize the curvature, torsion, and twist
the filament. The components of these vectors can be
pressed in terms of the Euler anglesu, w, andc:

t15S cosu cosw cosc2sinw sinc

cosu sinw cosc1cosw sinc

2sinu cosc
D , ~3!
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t25S 2cosu cosw sinc2sinw cosc

2cosu sinw sinc1cosw cosc

sinu sinc
D , ~4!

t35S sinu cosw

sinu sinw

cosu
D . ~5!

Substituting Eqs.~3! – ~5! into Eq. ~1!, the Frenet equations
can be rewritten in the form:

d u

ds
5v1 sinc1v2 cosc,

dw

ds
sinu52v1 cosc1v2 sinc, ~6!

dc

ds
sinu5~v1 cosc2v2 sinc!cosu1v3 sinu.

Solving these equations with respect to$v i% yields

v152
dw

ds
sinu cosc1

du

ds
sinc, ~7!

v25
dw

ds
sinu sinc1

du

ds
cosc, ~8!

v35
dc

ds
1cosu

dw

ds
. ~9!

We assume that the center line of the undeformed r
forms a circle of radiusr in the xy plane, and that its cros
section is rotated by anglec0(s) around this center line. The
Euler angles that describe this configuration are

u05p/2, w05s/r , c05ks/2r 1c00, ~10!

wherek is an integer andc00 is a constant, independent ofs.
Eqs.~7! – ~9! can be rewritten in the form

v0152~1/r !cosc0 , v025~1/r !sinc0 ,

and v035dc0 /ds. ~11!

Although, in general, the stress-free state of the ring can
arbitrarily twisted~e.g., because of the intrinsic tendency
the filament to twist!, in this paper we will not consider the
spontaneous twist (v0350), and takingk50, we setc0
5c00 ~for brevity, we will denote this constant byc0 in the
following!. This angle characterizes the orientation of t
principal axes of the cross section with respect to the pl
of the undeformed ring. In the case of a circular cross s
tion, all physical observables are independent ofc0 and it is
convenient to setc050.

The corresponding Euler parametrization of the triad v
tors is
9-2
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FLUCTUATING ELASTIC RINGS: STATICS AND DYNAMICS PHYSICAL REVIEW E64 011909
t015S 2sin~s/r !sinc0

cos~s/r !sinc0

2cosc0

D , t025S 2sin~s/r !cosc0

cos~s/r !cosc0

sinc0

D ,

t035S cos~s/r !

sin~s/r !

0
D . ~12!

In the absence of excluded volume and other nonela
interactions, the energy of a filament is of a purely elas
origin and can be represented as a quadratic form in
deviationsdvk5vk2v0k @2,7#,

U5
kBT

2 E
0

2pr

ds(
k51

3

akdvk
2 , ~13!

where kB is the Boltzmann constant,T is the temperature
and the bare persistence lengthsak represent the rigidity with
respect to the corresponding deformation modes. The ab
expression for the energy is based on the linear theory
elasticity and applies to deformations whose character
length scale~e.g., radius of curvature! is much larger than the
diameter of the filament@9#. Since the persistence lengths a
determined by material properties on length scales of
order of this diameter, they are the same as those of a stra
rod. We conclude thata1 and a2 are associated with th
bending rigidities of the filament with respect to the tw
principal axes of inertiaI 1 and I 2 ~they differ if the cross
section is not circular!, and thata3 is associated with twis
rigidity. In the special case of incompressible isotropic ro
with shear modulusm, the theory of elasticity yields@9#

a153mI 1 /kBT, a253mI 2 /kBT, and a35C/kBT,
~14!

where the torsional rigidityC is also proportional tom and
depends on the geometry of the cross section@for an ellipti-
cal cross section with semi-axesd1 and d2 , C
5pmd1

3d2
3/(d1

21d2
2)#. In this paper, we will treatai as given

material parameters of the ring.
In the following, we consider only small fluctuations o

the Euler angles about their values in the undeformed s
Eq. ~10!. This approximation remains valid as long as t
bare persistence lengths are much larger than the radiu
the ring, i.e.,ak@r . Expanding Eqs.~7! – ~9! in small de-
viations from the stress-free state, we find

dv15S dc

r
1

ddu

ds D sinc02
ddw

ds
cosc0 ,

dv25S dc

r
1

dd u

ds D cosc01
ddw

ds
sinc0 , ~15!

dv35
ddc

ds
2

d u

r
.

It is instructive to relate the above parameters to the c
vaturek and torsiont familiar from differential geometry of
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space curves@10#. A circular planar ring hask051/r and
t050. Expanding in small deviations about these valu
yields

dk5
ddw

ds
and dt5t52

d u

r
2r

d2d u

ds2
. ~16!

As expected, fluctuations of the curvature represent bend
deformations in the plane of the ring, and depend only on
anglew that describes the rotation of the tangent to the ri
in thexy plane@see Eq.~5!#. Torsion describes deviations o
the filament from this plane, and its fluctuations depend o
on the deviations of the angleu from p/2. The specification
of the local curvature and torsion completely determines
configuration of the center line of any curved filament, a
the Euler anglec complements the description by specifyin
the rotation of the cross section about this center line. Ho
ever, the elastic energy cannot be factorized into a sum
contributions due to deformation of the center line and ro
tion about it. As will be shown in Sec. VI,v3(s) defines the
rate of twist and therefore the persistence lengtha3 is asso-
ciated with twist. Twist represents not only the rotation abo
the center line@thedc/ds term in Eq.~9!#, but also contains
a contribution due to the curvature of the center line~the
cosudw/ds term in the above equation!. Similarly, although
inspection of Eq.~1! suggests thatv1(s) and v2(s) com-
pletely determine the variation of the tangentt3(s) as one
moves along the contour, this variation depends on the m
axes of the cross section ats @the vectorst1(s) and t2(s)#,
that themselves rotate with the cross section. This expla
the c dependence ofv1 and v2 in Eqs. ~7! and ~8!. The
relation between the two descriptions ($u,w,c% and$v i%) is
a special case of the more general relation between Eule
and Lagrangian descriptions in the theory of elasticity@11#.
While the Euler angles describe the orientation of the tr
$t i(s)% in the laboratory frame, the parametersv i(s) de-
scribe the local variation of this orientation as one mov
along the curve, in the frame associated with the triad its
The simple form of the energy, Eq.~13!, is a direct conse-
quence of this Lagrangian description.

Substituting Eqs.~15! into the elastic energy, Eq.~13!,
yields

U5kBTE
0

2pr

dsFA1

2 S ddu

ds
1

d c

r D 2

1
A2

2 S dd w

ds D 2

1A3S dd u

ds
1

d c

r Ddd w

ds
1

a3

2 S dd c

ds
2

d u

r D 2G , ~17!

where the coefficientsAi are defined as,

A15a1 cos2 c01a2 sin2 c0 , A25a1 sin2 c01a2 cos2 c0 ,

A35~a22a1!cosc0 sinc0 . ~18!

For a2.a1 , the constant Euler anglec0 measures the angl
between the major axis of inertia and thexy plane. The case
9-3
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c050 (c05p/2) corresponds to major axis that lies in th
xy plane~normal to thexy plane!. The coefficientsAi obey
the relations

A1A22A3
25a1a2 , A11A25a11a2 . ~19!

The periodic boundary conditions on the Euler angles

d u~2pr !5d u~0!, d c~2pr !5d c~0!,

d w~2pr !5d w~0!, ~20!

are supplemented by the condition that the ring is close
three-dimensional space,x(2pr )5x(0). Using Eq.~2!, this
condition can be recast into an integral form,

E
0

2pr

dsdt3~s!50. ~21!

For small deviations from equilibrium we get from E
~5!,

dt3~s!5S 2d w~s!sin~s/r !

d w~s!cos~s/r !

2d u~s!
D , ~22!

and the boundary conditions can be written as

E
0

2pr

dsd u~s!5E
0

2pr

dsd w~s!cos~s/r !

5E
0

2pr

dsd w~s!sin~s/r !50. ~23!

Since the deviations of the Euler angles are periodic fu
tions of s, they can be expanded in Fourier series

dh~s!5(
n

h̃~n!eins/r , h̃~2n!5h̃* ~n!, ~24!

for eachh5u,w,c, where the sum goes over all positive a
negative integersn. The boundary conditions Eqs.~23! can
be expressed as conditions on the Fourier coefficients,

ũ~0!5w̃~1!50. ~25!

Substituting Eqs.~24! into Eq. ~17! we find,

U

2prkBT
5

1

r 2FA1

2
uc̃~0!u21~A11a3!u i ũ~1!1c̃~1!u2G

1
1

r 2(n52

`

$A1u in ũ~n!1c̃~n!u2

1A2n2uw̃~n!u222A3@ in ũ~n!1

c̃~n!# inw̃~2n!1a3u inc̃~n!2 ũ~n!u2%. ~26!
01190
in
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The energy does not depend on modesc̃(1)52 i ũ(1) and
w̃(0) that correspond to a rigid body rotation of the ent
ring, with respect to axes lying in the plane of the ring a
normal to it, respectively.

The quadratic form inside the sum overn in Eq. ~26! can
be represented as a matrix in the space spanned by the
rier componentsũ(n),w̃(n), and c̃(n) ~this applies ton
.1; the casesn50,61 will be considered separately!,

Q~n!5S A1n21a3 A3n2 2 i ~A11a3!n

A3n2 A2n2 2 iA3n

i ~A11a3!n iA3n a3n21A1

D . ~27!

III. SPECTRUM OF FLUCTUATIONS

In order to obtain the spectrum of fluctuations of the rin
we diagonalize the free energy Eq.~26! by expanding the
Fourier componentsh̃(n) in the eigenvectorshk(n) of the
matrix Q(n),

h̃~n!5(
k

ck~n!hk~n!, ~28!

where h5u, w,c and hk(n) is the hth component of the
eigenvectorhk(n)5$uk(n),wk(n),ck(n)% of the quadratic
form Eq. ~26! corresponding to the eigenvaluelk(n). They
are normalized by the conditions,

(
h

hk~n!h l~2n!5dkl , (
k

hk~n!hk8~2n!5dhh8 .

~29!

Expanding the elastic energy in the eigenmodes gives

U5
pkBT

r (
n50

`

(
k

lk~n!uck~n!u2. ~30!

The three eigenvalueslk(n) corresponding to the Fourie
moden, are the roots of the characteristic cubic polynomi

l32b2l21b1l2b050, ~31!

with coefficients

b05a1a2a3n2~n221!2,

b15~a1a21a2a31a1a3!n2~n211!2A1a3~3n221!,
~32!

b25~a11a21a3!n21A11a3 ,

where we used Eqs.~18! and ~19! to simplify cumbersome
mathematical expressions. Since the matrixQ(n) is Hermit-
ian, its eigenvalues are real.

Inspection of Eqs.~31! and ~32! shows thatlk(2n)
5lk(n) and that all eigenvalues withn.1 are positive. Be-
cause of the boundary conditions, Eqs.~25!, there are only
9-4
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two independent normal modes corresponding to each o
cases,n50 andn51. In order to understand the physic
meaning of these modes, we introduce the components o
Fourier transforms of the curvature and torsion, Eq.~16!,

k̃~n!5
in

r
w̃~n! and t̃~n!5

n221

r
ũ~n!. ~33!

Substituting the boundary conditionsũ(0)5w̃(1)50 into
the above expressions we conclude that for modes witn
50 and 1, bothdk and dt vanish and, therefore, thes
modes do not affect the planar circular configuration of
center line of the ring. There are two zero energy modes
correspond to symmetry operations on the undeformed r
One n50 mode, with eigenfunctionw1(0)51; c1(0)50,
describes the rotation of the ring about thez axis. Onen
51 mode, with eigenfunctionu1(1)51; c1(1)52 i , corre-
sponds to the rotation of the ring about an axis in thexy
plane. The two remaining modes have an energy gap and
twist modes that leave the center line undisturbed. Thn
50 mode with eigenfunctionw2(0)50; c2(0)51 has an
eigenvaluel2(0)5A1, and describes the uniform twist o
the ring about its center line. Since this eigenvalue does
vanish for arbitrarya1 anda2, we conclude that the uniform
twist of a ring costs energy even if the ring has a circu
cross section. This conclusion agrees with Ref.@12#, where
the dynamics of the uniform twist mode was studied. T
n51 mode with eigenfunctionu2(1)51; c2(1)5 i has the
eigenvaluel2(1)52(A11a3) and corresponds to the rota
tion of the ring with respect to an axis that passes through
center line and lies in thexy plane, accompanied by the twis
of the cross section by the anglec that varies periodically@as
cos(s/r)# along the contour of the ring. The dynamics of th
mode was studied in Ref.@13#.

In the limit n@1, fluctuations of the three Euler angle
are decoupled andlk(n).akn

2. In general, each norma
mode of the ring corresponds to fluctuations of all three E
ler angles,d u(s), d w(s) andd c(s), and describes a com
plex three-dimensional configuration.

The eigenvalue problem is simplified for a circular cro
section (a25a1), or when the cross section is asymmet
but c050 ~the casec05p/2 is reduced toc050 by the
substitutiona1↔a2). In these cases, the moded w(s) de-
couples from the other two modes and has the spect
l1(n)5a1n2(nÞ61). This mode corresponds to bendin
fluctuations that lie entirely in the plane of the ring. Th
other two modes are linear combinations ofd u(s) and
d c(s), with eigenvalues

l2,3~n!5
a21a3

2
~n211!

6AS a22a3

2 D 2

~n211!214n2a2a3. ~34!

Equation~34! can be further simplified in the limit of large
rigidity with respect to twista3@a2 in which case
01190
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l2~n!5a2

~n221!2

n211
for n>1,

l3~n!5a3~n211! for n>2. ~35!

In the opposite limita3!a2, the eigenvalues can be found b
substitutinga2↔a3 in Eq. ~35!.

Inspection of Eq.~34! shows thatl3(n) vanishes identi-
cally for all n when a350 @this statement applies even t
rings with noncircular cross section—see Eqs.~31! and
~32!#, indicating that the amplitudes of the correspondi
fluctuation modes grow without limit in the absence of tw
rigidity. Examining the expression for the elastic energy, E
~17!, we conclude that these zero energy modes corresp
to fluctuations for which

dd u/ds52d c/r . ~36!

In the absence of twist rigidity, twist fluctuations carry n
energy penalty and the angle of the twist of the cross sec
(d c) can always adjust itself to an arbitrary deviation of t
center line from the plane of the unperturbed ring (d u), so
that this condition Eq.~36! is satisfied. The presence of a
infinite number of zero energy modes means that the tw
rigidity (a3Þ0) is absolutely essential for stabilizing th
ring against out-of-plane fluctuations, and that bending e
ticity alone cannot suppress this instability.

IV. CORRELATIONS OF EULER ANGLES

Applying the equipartition theorem to Eq.~30!, we get

^ck~n!ck8~2n8!&5
r

plk~n!
dnn8dkk8 . ~37!

Using expansion~28! and averaging with the help of Eq
~37!, the correlation functions of Euler angles can be e
pressed in terms of the eigenvalueslk(n) and the eigenfunc-
tions hk(n) of the Q(n) matrix:

^dh~s!dh8~s8!&5(
n

ein(s2s8)/r^h̃~n!h̃8~2n!&

5
r

p(
n

ein(s2s8)/r(
k

hk~n!hk8~2n!

lk~n!
,

~38!

wheredh,dh85d u, d w, d c. Care should be exercised i
evaluating the above expression, when considering the c
tribution of the modes withn50,61, since modes with van
ishing eigenvalues should be excluded. A straightforw
calculation gives
9-5



(
n50,61

ein(s2s8)/r(
k

hk~n!hk~2n!

lk~n!
5

1

A1
S 0 0 0

0 0 0D 1
1

A11a3S cosS s2s8

r D 0 2sinS s2s8

r D
0 0 0 D , ~39!
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0 0 1
sinS s2s8

r D 0 cosS s2s8

r D
wherehkhk denotes the direct product of two vectorshk , thehh8 component of which ishkhk8 .

For nÞ0,61 we find

(
k

hk~n!hk8~2n!

lk~n!
5Qhh8

21
~n!, ~40!

whereQ21(n) is the inverse of the matrixQ defined in Eq.~27!,

Q21~n!5S 1

a3~n221!2
1

n2

a'~n221!2

2A3

a1a2~n221!
S 1

a3
1

1

a'
D in

~n221!2

2A3

a1a2~n221!

1

ain
2

2 iA3

a1a2~n221!

2S 1

a3
1

1

a'
D in

~n221!2

iA3

a1a2n~n221!

n2

a3~n221!2
1

1

a'~n221!2

D , ~41!
n
e

and where

1

a'

5
cos2 c0

a1
1

sin2 c0

a2
,

1

ai
5

sin2 c0

a1
1

cos2 c0

a2
. ~42!

Effective persistence lengthsa3 anda' control both fluctua-
tions perpendicular to the plane of the ring and fluctuatio
of the twist anglec, andai controls fluctuations in the plan
of the ring. Using Eqs.~38! and~41!, we obtain the correla-
tion functions of Euler angles~here s5us22s1u, 0,s
,2pr )

^d u~s1!d u~s2!&5
r

p

cos~s/r !

A11a3
1

r

pa3
f 3S s

r D1
r

pa'

f 1S s

r D ,

^d w~s1!d w~s2!&5
r

pai
f 2S s

r D ,

^d c~s1!d c~s2!&5
r

pA1
1

r

p

cos~s/r !

A11a3
1

r

pa3
f 1S s

r D
1

r

pa'

f 3S s

r D , ~43!

^d u~s1!d w~s2!&52
r sin~2c0!

2p S 1

a2
2

1

a1
D

3F f 1S s

r D2 f 3S s

r D G ,

01190
s

^d u~s1!d c~s2!&52
r

p

sin~s/r !

A11a3
1

r

pS 1

a3
1

1

a'
D f 4S s

r D ,

^d w~s1!d c~s2!&52
r sin~2c0!

2p S 1

a2
2

1

a1
D f 5S s

r D ,

where we defined, for 0,x,2p,

f 1~x!5 (
n52

`
n2 cosnx

~n221!2

5F ~p2x!2

8
2

p2

24
1

1

16Gcosx2
p2x

4
sinx,

f 2~x!5 (
n52

`
cosnx

n2
5

~p2x!2

4
2

p2

12
2cosx,

f 3~x!5 (
n52

`
cosnx

~n221!2

5F ~p2x!2

8
2

p2

24
2

3

16Gcosx1
p2x

4
sinx2

1

2
,

~44!

f 4~x!5 (
n52

`
n sinnx

~n221!2

5F ~p2x!2

8
2

p2

24
1

1

16Gsinx,
9-6
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f 5~x!5 (
n52

`
sinnx

n~n221!

5
3

4
sinx1

p2x

2
~cosx21!.

Inspection of Eqs.~43! shows that the bare persisten
length associated with the twist rigiditya3 plays a funda-
mentally important role: fluctuations of the anglesc and u
and the correlation between these angles, diverge in the
a3→0! Therefore, simplified models of elastic filamen
with nonvanishing spontaneous curvature that do not t
into account twist rigidity, cannot describe fluctuations a
elastic response of the ring. This is not the case for a stra
rod, whose spatial fluctuations can be successfully descr
by the wormlike chain model@14# ~with a350). The reason
for the difference stems from the fact that the elastic ene
of straight rods contains no coupling between the angles
describe the spatial conformation of the center line (u andw)
and the angle that describes the twist of the cross sec
about this center line (c). When twist rigidity vanishes (a3
50) there is no energy penalty for twisting the cross sect
about the center line and the amplitude of twist fluctuatio
of the cross section about the center line diverges, but
presence of bending rigidity (a1 ,a2Þ0) suffices to suppres
spatial fluctuations of the center line about its straight stre
free configuration. For rings, the elastic energy in Eq.~17!
contains cross terms in the anglesd c and d u that couple
both types of fluctuations. Inspection of Eq.~17! shows that
whena350, fluctuations withdd u/ds1d c/r 50 have zero
energy cost@see Eq.~36!# and, since in the absence of twi
rigidity the angled c can always adjust itself to satisfy th
conditiond c52rdd u/ds, for a350 there is no elastic en
ergy penalty for out-of-plane fluctuations of the ring and t
amplitude of such fluctuations diverges. We conclude t
standard wormlike chain theories in which only bending
gidity is taken into account, can not model fluctuating rin

In Figs. 1–2 we plot correlation functions of Euler angle
for a ring with circularly symmetric cross section. Substitu
ing a15a2 in the expressions for the angular correlators

FIG. 1. Plots of two-point correlation functions of Euler angl
^dh(s)dh8(0)& vs the contour distance between the pointss in the
interval 0<s<2pr : ^d u(s)d u(0)& ~cross!, ^d w(s)d w(0)& ~dia-
mond!, ^d c(s)d c(0)& ~circle!, and ^d u(s)d c(0)& ~solid line!.
The parameters arec050 anda15a2510r , a35100r .
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Eqs. ~43! we find ^d u(s1)d w(s2)&5^d w(s1)d c(s2)&50.
The physical reason for this behavior becomes clear w
one recalls the discussion of the eigenvalue problem fo
ring with circularly symmetric cross section@see Eq.~34!#.
In this case, fluctuations ofw(s) decouple from those of the
other two angles and therefore, cross correlation functi
involving dw vanish identically. In Fig. 1, we consider th
casea15a2!a3, i.e., twist rigidity is much larger than the
that of the bending modes. The diagonal angular correla
functions are oscillatory functions of the contour distan
with maxima atus22s1u50, pr and 2pr ~they are symmet-
ric with respect to reflection about the pointus22s1u5pr ).
These behaviors result from interference of two wave pa
ets propagating along two opposite directions along the r
As a consequence of the large twist rigidity, the correlator
the twist angle is always positive, whilêd u(s1)d u(s2)&
and ^d w(s1)d w(s2)& fluctuate around zero. The cross co
relation function,̂ du(s1)d c(s2)&, vanishes asus22s1u→0.
The physical reason for this surprising behavior is tha
short segment of the ring confined between these points
be considered as a nearly straight incompressible rod. S
the twist of such a rod does not produce any deformati
local fluctuations of twist, and of the other two modes are
correlated with each other. For larger contour separatio
spontaneous curvature begins to play a role and fluctuat
of u and c become coupled. This is a manifestation of t
crossover from small scale~twist and spatial conformation
fluctuate independently! to large scale~coupled twist and
center line fluctuations! behavior, that will be discussed i
greater detail in Sec. VI.

In Fig. 2 we present the case of small twist rigidity,a1
5a2@a3. The twist correlation function develops four nod
~i.e., points at which it vanishes! and, at the same time, it
amplitude is strongly enhanced. In Fig. 2 we did not plot t
correlation function̂ dw(s1)d w(s2)&, since it depends only
on the bending rigidities@see the second of Eqs.~43!# and is
therefore the same as in Fig. 1. Figure 3 deals with the c
of an asymmetric cross section~or asymmetric rigidity in the
cross sectional plane!, a1Þa2. The cross correlations
^d u(s1)d w(s2)& and ^d w(s1)d c(s2)& no longer vanish
~for c0Þ0,p/2), even though their amplitude is muc

FIG. 2. Plots of two-point correlation functions of Euler angl
^dh(s)dh8(0)& vs the contour distance between the pointss in the
interval 0<s<2pr : ^d u(s)d u(0)& ~cross!, ^d c(s)d c(0)&
~circle!, and ^d u(s)d c(0)& ~solid line!. The parameters arec0

50 anda15a2510r , a35r .
9-7
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 64 011909
smaller than that of̂ d u(s)d c(0)&. Since the argument
presented in the preceding paragraph apply here as well
two cross correlation functions involvingdc vanish ass2
→s1. The cross correlation function̂d u(s1)d w(s2)& be-
haves in a way similar to that of the diagonal correlati
functions and is symmetric aboutus22s1u5pr .

We would like to comment on the physical meaning
fluctuations of the anglew(s). We find from Eq.~43!

^@d w~s2!2d w~s1!#2&5
si

ai
2

2r

p

1

ai
F122 cosS s

r D G ,
~45!

where the ‘‘parallel’’ persistence lengthai is defined in Eq.
~42!, and wheresi5s(12s/2pr ) is the effective contour
length for the parallel connection of two segments, one
lengths5us22s1u and the second of length 2pr 2s ~analo-
gously to parallel connection of resistors in an electrical c
cuit!. The effective elastic modulus between pointss1 ands2
is proportional to

1

si
5

1

s
1

1

2pr 2s
, or si5sS 12

s

2pr D . ~46!

The second term on the right-hand side of Eq.~45! arises due
to subtraction of the contribution of the modew̃(1) because
of the closure of the ring. Eq.~45! describes the Brownian
fluctuations of phasew(s) on a circle, with effective ‘‘diffu-
sion’’ coefficientai

21 . This means that the anglew can jump
discontinuously from point to point and therefore, the amp
tude of its derivativedw/ds diverges. Sincedw/ds is the
local curvature of the filament@see Eq.~16!#, we conclude
that ^@dk(s)#2&→`. A similar calculation for the second
derivative of the angleu shows that its amplitude diverge
and therefore^@dt(s)#2&→` as well. The above diver
gences are eliminated by a cutoff on length scales of
order of the thickness of the filament and, on length sca
larger than this diameter, the contour of the ring remain
smooth and continuous curve in the process of thermal fl
tuations.

FIG. 3. Plots of nondiagonal two-point correlation functions
Euler angleŝ dh(s)dh8(0)& vs the contour distance between th
points s in the interval 0<s<2pr : ^d u(s)d w(0)& ~cross!,
^d w(s)d c(0)& ~circle!, and ^d u(s)dc(0)& ~solid line!. The pa-
rameters arec05p/4 anda1510r ,a25100r , a3510r .
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V. SPATIAL CORRELATIONS AND RADIUS OF
GYRATION

We proceed to calculate the correlation function^@x(s1)
2x(s2)#2& that measures the mean-square spatial separa
between pointss1 and s2 on the contour of the filament
Integrating Eq.~2!, yields x(s1)2x(s2)5*s2

s1t3(s8)ds8 and

we can express this correlation function in terms of the c
relator of tangents to the ring, at two arbitrary points on t
contour, ^t3(s8)"t3(s9)&. We show below that this orienta
tional correlation function of the tangent vectors can be
pressed in terms of correlation functions of Euler angl
Expanding the vectort3 to second order in deviations o
Euler anglesdh from their unperturbed values gives,

t3[t031dt35d ut018 ¿d wt028 1F12
1

2
~d u21d w2!G t03,

~47!

where the vectorst0i8 (s) are defined by

t018 ~s!5S 0

0

21
D , t028 ~s!5S 2sin~s/r !

cos~s/r !

0
D ,

t03~s!5S cos~s/r !

sin~s/r !

0
D . ~48!

Whenc050, these vectors coincide with the vectors of u
perturbed triad, Eq.~12!. Using Eq.~47! we find ~in matrix
notation!

^t3~s1!t3~s2!&5~12^d u2&2^dw2&!t03~s1!t03~s2!

1^d u~s1!d u~s2!&t018 ~s1!t018 ~s2!

1^dw~s1!d w~s2!&t028 ~s1!t028 ~s2!

1^d u~s1!d w~s2!&t018 ~s1!t028 ~s2!

1^d w~s1!d u~s2!&t028 ~s1!t018 ~s2!,

~49!

wheret0i t0 j denotes the direct product of two vectorst0i and
t0 j . The correlation functions of the Euler angles that app
in the above expressions are given in Eq.~43!. As expected,
the normalization condition for unit vectors,^t3(s)"t3(s)&
51, is satisfied up to terms of second order indh.

Using the equality

E
0

s

ds1E
0

s

ds2f S s22s1

r D52r 2E
0

s/r

duS s

r
2uD f ~u!,

~50!

valid for any even functionf (x), we obtain
9-8
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^@x~s1!2x~s2!#2&5E
s1

s2
ds8E

s1

s2
ds9^t3~s8!"t3~s9!&

52r 2F12cosS s

r D G2
r 3

p F 1

ai
giS s

r D
1

1

a'

g'S s

r D1
1

a3
g3S s

r D G , ~51!

wheres5us22s1u, 0,s,2pr . and wherea'
21 is defined

in Eq. ~42!. The functionsgi ,g' andg3 are given by

gi~x!52E
0

x

~x2u!@ f 2~0!2 f 2~u!#cosudu

52~11cosx!S px2
x2

2 D2
1

2
~11cosx!2

12~p2x!sinx12,

g'~x!52E
0

x

~x2u!@ f 1~0!cosu2 f 1~u!#du

52
1

2 S xp2
x2

2
11D cosx1

1

2
~p2x!sinx1

1

2
,

~52!

g3~x!52E
0

x

~x2u!@ f 3~0!cosu2 f 3~u!#du

52
1

2 S xp2
x2

2
13D cosx

1
3

2
~p2x!sinx2xp1

x2

2
1

3

2
.

For small x!1 we have gi(x).g'(x).px3/12 and
g3(x).x4/32!gi(x). Combining these expressions into E
~51!, we conclude that the lowest-order corrections to
straight line result,̂ @x(s)2x(0)#2&s/r→05s2, depend only
on the effective bending persistence length 2/(a1

211a2
21), in

agreement with the wormlike chain model. For generals this
correlator depends on all the bare persistence lengths,a1 ,a2,
anda3.

In Fig. 4 we plot the mean-square distance between
points on the ring contour,̂@x(s)2x(0)#2&, as a function of
s, in the interval 0<s<2pr . As expected, it increases par
bolically with s ~straight rod behavior for smalls) and ex-
hibits a maximum ats5pr ~the maximum is determined b
the geometry of the undeformed ring!. Fluctuations suppres
this maximum in a way that depends on the various rigid
parameters. Thus, decreasing the twist rigiditya3 has a much
smaller effect on the amplitude of the maximum, than d
creasing the bending rigiditiesa1 or a2. The origin of this
effect is that twist rigidity does not affect the spatial confo
mations of a short segment of the ring that can be consid
as a nearly straight incompressible rod. Therefore, twist fl
tuations affect only the conformations of long segments,
01190
e
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which deviations from a straight rod become significa
~compare solid line and boxes in Fig. 4!.

The radius of gyration is defined as

Rg
25

1

2pr R dsFx~s!2
1

2pr R ds8x~s8!G2

. ~53!

Averaging this expression over fluctuations, we can expr
^Rg

2& in terms of the two-point correlation function

^Rg
2&5

1

8p2r 2 R ds1 R ds2^@x~s1!2x~s2!#2&. ~54!

Using Eqs.~51! and ~52! we find

^Rg
2&5r 2F12S 17

8p
2

p

6 D r

ai
2

3

4p

r

a'

2S 7

4p
2

p

6 D r

a3
G .
~55!

All the corrections to the unperturbed result (r 2) are nega-
tive, and we conclude that fluctuations make the ring m
compact. Since our weak fluctuation approximation is o
valid in the rangeai@r , these fluctuation corrections ar
rather small. Because of the small coefficient in front of t
r /a3 term, the effect of twist fluctuations on the radius
gyration is relatively weak, but fluctuations diverge and t
expression for the radius of gyration becomes unphysica
the limit of vanishing twist rigidity,a3→0.

VI. WRITHE FLUCTUATIONS

The twist numberTw associated with a configuration o
the ring can be expressed through the Euler angles,

Tw5
1

2p R v3~s!ds5
1

2pE0

2pr S dc

ds
1cosu

dw

dsDds,

~56!

where we used the definition of the rate of twistv3(s) about
the tangent vector, in terms of the Euler angles, Eq.~9!. In

FIG. 4. Plot of dimensionless rms distance between points
the ring contour^@x(s)2x(0)#2&/r 2 vs the contour distance be
tween the pointss in the interval 0<s<2pr . The parameters are
c050 and a15a25a3510r ~solid line!, a15a2510r , a35r
~box!, a15a25r , a3510r ~cross!, anda1510r , a25a35r ~dia-
mond!.
9-9
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 64 011909
order to understand the physical meaning ofv3, consider the
variation of the triad vectort1 ~or t2) as one moves an in
finitesimal contour distanceds along the center line of the
curved filament. The projection of the vectort1(s1ds) on
the cross section ats @the plane normal to the tangentt3(s)#,
rotates by an anglev3(s)ds compared to its original direc
tion, t1(s). Inspection of Eq.~56! shows that this rotation
consists of two contributions. The first term corresponds
the contribution of a straight filament of lengthds ~the nor-
mal planes at pointss and s1ds remain parallel to each
other!, whose cross section is twisted around the center l
by an angledc. The second term cosudw/dsarises due to the
curvature of the center line; since the cross sections at po
s ands1ds are, in general, tilted with respect to each oth
the projection oft1(s1ds) on the cross section ats will
rotate by cosudw. Notice that because of the interplay of th
two effects, a curved filament can have zero twist even
dc/dsÞ0. This effect will be demonstrated in Sec. VII~see
Fig. 6!.

In addition to the twist of the filament that is closely a
sociated with the rotation of the cross section about a cur
center line, and can be defined both locally@the twist ‘‘den-
sity’’ v3(s)# and globally (Tw), one can introduce an inte
gral characteristic of the spatial configuration of the cen
line that reflects its tortuosity, known as writhe number.
order to express the writhe numberWr of a given configu-
ration of the ring in terms of Euler angles, one usually beg
with the Fuller equation for the writhe of a closed curve@15#:

Wr5
1

2p R ~ t033t3!"
d

ds
~ t031t3!

11t03•t3
ds, ~57!

where3 and " denote, respectively, vector and scalar pro
ucts. In the above expression, we made use of the fact
the writhe number of a planar circular ring vanishes@16#.
The above expression is valid as long asut03•t3(s)u,1 in the
denominator, for all pointss on the contour of the ring. This
condition is satisfied in our work, since we only consid
small fluctuations about a planar undeformed ring that lie
the xy plane.

A more physically transparent definition of writhe
based on the existence of a topological invariant of a ri
called the linking number@17# Lk. The total rotation of the
cross section as one moves around the contour of the rin
given by 2pLk where the linking number

Lk5Tw1Wr, ~58!

does not depend on the conformation of the ring and is th
fore a conserved quantity. In the absence of spontane
twist, both the twist and the writhe numbers of a planar c
cular ring vanish, andLk5Lkeq50. In general, sinceLk is a
constant for a given topology,dLk5dWr1dTw50, and
expanding the integrand in Eq.~56! in small deviations of the
Euler angles from their spontaneous values in the un
turbed ring, the deviations of writhe and twist can be e
pressed as
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dWr52dTw5
1

2pE0

2pr dd w

ds
d uds5(

n
inw̃~n!ũ~2n!,

~59!

where we usedrdd w50 andrd uds50 @see Eq.~23!#. The
last equality in Eq.~59! was derived using Eq.~24!. Notice
that the integrand in Eq.~59! depends on the product ofd w
andd u, and we conclude that writhe deviations vanish bo
when fluctuations of the angles are confined to the plane
the ring (d u50), and when they are normal to this plan
(d w50).

Since^w̃(n) ũ(2n)& is an even function ofn, multiplying
by n and summing over all positive and negative integ
values ofn yields

^dWr&5(
n

in^w̃~n!ũ~2n!&50. ~60!

The dispersion of the writhe number is given by

^dWr2&5 (
nÞ0,61

Wr2~n!,

Wr2~n!5n2@^ũ~n!ũ~2n!&^w̃~n!w̃~2n!&

2^w̃~n!ũ~2n!&2#, ~61!

where we excluded modes withn50 andn561, because
of the boundary conditionsũ(0)5w̃(1)50. Using Eqs.~43!
for the correlation functions of Euler angles, we obtain t
mean-square amplitude of writhe fluctuations at wavelen
r /n,

Wr2~n!5
r 2

p2a1a2a3

A11a3n2

~n221!2
. ~62!

Notice that the amplitude of writhe fluctuations diverges
a350 and we conclude that twist rigidity plays an essen
role in stabilizing the contour of the ring against writhe flu
tuations. The origin of this divergence is the same as tha
the correlator̂ du(s)d u(0)& in Eq. ~43! and has been dis
cussed following Eq.~44!.

For large wave vectorsunu@1 the mean-square amplitud
of the nth mode of writhe fluctuations depends only on t
bending persistent lengths,a1 anda2. The physical reason is
that on sufficiently small scales, the filament behaves a
straight incompressible rod whose properties do not dep
on the twist persistence lengtha3 ~see Ref.@14#!. In the limit
A1!a3n2, the writhe-writhe correlation function for a
straight rod takes the form,

Wr2~q!5
4

a1a2q2
, ~63!

where we defined the wave vectorq52pn/r . Eq. ~63! is
valid for straight rods when 2p/q!ab , where the persis-
tence lengthab of the rod is defined by
9-10
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1

ab
5

1

2S 1

a1
1

1

a2
D . ~64!

The crossover to a long wave-length regime in which wri
modes become affected by twist rigidity, takes place a
length scalej t5rAa3 /ab and, therefore, such a regime e
ists for a ring of radiusr only if a3 /ab<1. As a consistency
check, notice that the straight rod case follows from
above expression forj t by substitutingr 5`, and sincej t
diverges in this limit, Eq.~63! applies throughout the entir
range of parameters.

Substituting Eq.~62! back in to Eq.~61! yields

^dWr2&5S 1

6
1

1

8p2D r 2

a1a2
1S 1

6
2

11

8p2D r 2

aia3
. ~65!

Notice that^dWr2&;r 2, in agreement with the scaling est
mates in Ref.@18#. Indeed, since writhe is a quadratic for
of d w and d u @see Eq.~59!#, each of which has typica
fluctuations ofAr /a (a is a characteristic persistence length!,
the characteristic amplitude of writhe fluctuations isdWr
'r /a.

The entire probability distribution of writhe can also b
computed. Beginning with the formal definition of this di
tribution

P~dWr!5K dFdWr2 (
nÞ0,61

inw̃~n!ũ~2n!G L , ~66!

and using the exponential representation of thed function,
yields

P~dWr!5E
2`

` dk

2p
eikdWrK expFk(

n
nw̃~n!ũ~2n!G L

5E
2`

` dk

2p
eikdWr )

nÞ0,61
A detQ~n!

det@Q~n!1knY#
,

~67!

where the matrixY is defined as

Y5
r

pS 0 21 0

1 0 0

0 0 0
D . ~68!

Calculating the corresponding determinants gives,

P~dWr!5E
2`

` dk

2p

eikdWr

)
n52

`

@11Wr2~n!k2#

. ~69!

This integral can be calculated by expanding the integr
into partial fractions and we get

P~dWr!5 (
n52

`

p~n!
1

2Wr~n!
expF2

udWru
Wr~n!G , ~70!
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p~n!5)
k.1
kÞn

F12
Wr2~k!

Wr2~n!
G21

. ~71!

Evaluating the product in Eq.~71! yields,

p~n!5~21!n
pn2~n21a!~11a!Aa

2~n221!sinh~pAa!
, ~72!

a~n![
~n222!A12a3

A11n2a3

.

The above expression forp(n) can be used to calculat
all the even moments of writhe fluctuations~odd moments
vanish due to the radial symmetry of the undeformed rin!,

^dWrk&5k! (
n52

`

p~n!Wrk~n!,

(
n52

`

p~n!51, k52,4, . . . ,. ~73!

Since moments withk.2 do not vanish, it is obvious tha
the writhe distribution is not Gaussian. Furthermore, insp
tion of Eq. ~70! shows that the distribution has an expone
tial tail at large dWr. For strongly writhing rings,
^dWr2&1/2!udWru, then52 term dominates the sum in Eq
~70! and the free energyF52kBT ln P(dWr) is given by~up
to logarithmic corrections!,

F

kBT
5

dWr

Wr~2!
for ^dWr2&1/2!udWru!1. ~74!

The second inequality,udWru!1, follows from the assump-
tion that the deviations of Euler angles from their equili
rium values, are small.

The writhe distribution function can be written in th
form

P~dWr!5
pAa1a2

r
pS pAa1a2

r
dWr,

A1

a3
D . ~75!

Plots of the dimensionless functionp(x,A1 /a3) for A1 /a3
50.1, 5, and 20 are shown in Fig. 5. As intuitively expecte
the probability of large writhe fluctuations~large
pAa1a2dWr/r ) decreases with increasing twist rigidity~de-
creasingA1 /a3), but the effect saturates forA1 /a3,0.1. The
shape of the curves bears close resemblance to the resu
recent computer simulations@19#.

VII. ELASTIC RESPONSE OF THE RING

According to the fluctuation-dissipation theorem, the c
relation functions of the Euler angles determine the ela
response of the ring to external distributed torqueM (s), ap-
plied along its contour. In the following, we use this info
mation in order to study the deformation of the ring by e
ternal torques and forces. Since we are not interested in r
9-11
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body rotation, we assume that the total torque on the r
vanishes, i.e.,

R dsM ~s!50. ~76!

The deviations of the Euler angles from their unperturb
values are given by

dh~s!5
1

kBT (
h8

R ds8^dh~s!dh8~s8!&Mh8~s8!,

~77!

whereh,h85u,w,c, and Mh8 are the corresponding com
ponents of the torque. In order to calculate the elastic
sponse to external force,F(s), applied to the center line o
the ring, we rewrite the work done by this force,W
5rdsF(s)"dx(s), in the form

W5 R dsm~s!"dt3~s!, where m~s!5E
s

2pr

ds8F~s8!.

~78!

Since we are not interested in translation of the ring a
whole, we assume that the total force acting on the r
vanishes,rdsF(s)50, which means that the functionm(s)
is continuous ats50, i.e., m(2pr )5m(0)50. Using Eq.
~22! we can recast the expression for the work done by
force, Eq.~78!, in the form

W5 R ds$@2m1~s!sin~s/r !1m2~s!cos~s/r !#

3d w~s!2m3~s!du~s!%. ~79!

Inspection of this equation shows that in the presence
external force we have to modify the expressions for
moments

Mw~s!→Mw~s!2m1~s!sin~s/r !1m2~s!cos~s/r !,

M u~s!→M u~s!2m3~s!, ~80!

FIG. 5. Plot of probability distribution function of writhe
p(x,A1 /a3) vs x5(pAa1a2/r )dWr for A1 /a350.1 ~solid line!, 5
~cross!, and 20~box!.
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in Eq. ~77!. The condition that the total torque due to th
external force vanishes@Eq. ~76!# imposes additional condi
tions on the forceF(s). Upon some algebra, these conditio
can be written in the form,

E
0

2pr

Ft~s!ds5E
0

2pr

sF3~s!ds50, ~81!

whereFt(s)5F(s)•t03(s) is the tangential component of th
forceF. Inspection of Eq.~80! shows that a small force with
m1(s)52Fr(s)r cos(s/r), m2(s)52Fr(s)r sin(s/r) and
m3(s)50 does not deform the ring. From Eq.~78! we find
that Fr(s) is the radial component of the forceF(s), while
its tangential component isFt(s)5rd@Fr(s)#/ds. This ten-
sile force balances the contribution of variation of the rad
forceFr(s) along the contour of the ring and prevents buc
ling until a critical value of the radial force is reached.

Equations~47! and~48!, together with Eqs.~77! and~80!
and inextensibility condition Eq.~2!, determine the confor-
mation of the deformed ring, under the action of small e
ternal torque and force. As an illustration, consider the
formation of the ring under external forcesF applied to two
opposite pointss5p/2 ands53p/2 on the ring contour,

F1~s!5F@d~s2p/2!2d~s23p/2!#. ~82!

Using Eqs.~77!, ~78!, and ~80!, we obtain the following
expressions for the resulting variations of Euler angles,

d u~s!52F
r 2sin 2c0

2p S 1

a2kBT
2

1

a1kBTDhuS s

r D ,

d w~s!5F
r 2

paikBT
hwS s

r D , ~83!

d c~s!52F
r 2sin 2c0

2p S 1

a2kBT
2

1

a1kBTDhcS s

r D ,

where

hu~x!5
dhc~x!

dx
5 (

k51

`
4k~21!k

~4k221!2
sin~2kx!52

p

4
x cosx,

hw~x!5 (
k51

`
~21!k

k~4k221!
sin~2kx!5x2

p

2
sinx, ~84!

hc~x!522(
k51

`
~21!k

~4k221!2
cos~2kx!

512
p

4
cosx2

p

4
x sinx.

The above series are calculated in the intervaluxu,p/2. Us-
ing the periodicity condition,hi(x1p)5hi(x), the functions
hi(x) can be extended outside this interval. Inspection of
~14! shows that the persistence lengthsai are inversely pro-
portional to temperature. Since temperature enters Eq.~83!
only in combinationsaikBT, it cancels from the above ex
9-12
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pressions and can affect the results only through tempera
dependence of elastic moduli and moments of inertia.

Equation~83! shows that the deformation of the ring u
der the action of the force given in Eq.~82!, does not depend
on twist rigidity a3. Therefore, such external forces do n
produce any twist and can only lead to a bending of the ri
This result remains valid for more general distributed forc
on the center line, provided they act only in the plane of
undeformed ring. Inserting the expressions for the deviati
of the Euler angles Eqs.~83! and~84! into Eq. ~15!, we find
that dv350, and consequently, the variation of anglec can
be expressed in terms of the conformation of the center
~angleu), asrd@d c(s)#/ds5d u(s). Since the sum of twist
and writhe numbers is a topologically conserved numb
writhe is invariant under such deformations.

Figure 6 shows the effect of spontaneous~constant! angle
of twist, c0, on the response of a ribbonlike (a2@a1) ring to
compressional forces applied at opposite points of the ce
line. The forces, shown by arrows, lie in the plane of t
undeformed ring. In the case of a ribbon with a short a
lying in the plane of the undeformed ringc05p/2, the ring
remains planar in the course of deformation@Fig. 6~a!#. A
ribbon with a short axis lying normal to the plane of the rin
c0→0, undergoes three dimensional deformation@Fig. 6~b!#.
At first sight, Fig. 6~b! appears to suggest that the ring
twisted, in contradiction with the previously made statem
that its configuration is twist free. However, as is evide
from Eq. ~15!, for the density of twist,dv35dd c/ds
2d u/r , and from the discussion in Sec. VI, the mathema
cal definition of the twist of a filament with nonvanishin
spontaneous curvature (rÞ`) involves both the rotation o
the cross section about the center line and the curvatur
the center line itself. The fact that the two effects can
exactly in Figs. 6~a! and 6~b! is a consequence of the fa
that the forces act entirely in thexy plane and do not produc
a component of torque along the contour of the ring, wh
could give rise to twist.

VIII. DYNAMICS

Consider small instantaneous deviationsdx(s,t)5x(s,t)
2x0(s) of the center line of the ring from its stress-fre

FIG. 6. Plots of deformation of ribbonlike rings~with a2 /a1

5104) by compressional forces~see arrows!. ~a! c05p/2 and~b!
c051023.
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position, x0(s). We expressdx(s,t) in terms of its projec-
tions on the triad vectors of the undeformed ring,t0k(s),

dx~s,t !5(
k

dxk~s,t !t0k~s!. ~85!

We proceed to write the Langevin equations that govern
dynamics of fluctuations of the center line,dx, and the dy-
namics of angular fluctuations of the cross section about
center line,dc. Some care should be exercised in derivi
the Langevin force from the expression for the elastic ene
Eq. ~13! since up to this point, we have used the inexten
bility constraint Eq.~2!. In order to avoid complications as
sociated with the introduction of rigid constraints@20#, we
replace the strict inextensibility condition,ddx3 /ds
5v02dx12v01dx2 ~see Appendix A!, by an energy penalty

Uext5
kBT

2r 2
aextE

0

2pr

dsS ddx3

ds
2v02dx11v01dx2D 2

.

~86!

The persistence lengthaext describes the rigidity of the fila-
ment with respect to local compression and extension.
total elastic energyUtot5U1Uext is the sum of contribu-
tions of bending and twist modes Eq.~17! and extensional
modes Eq.~86!. We will use the above expression for th
total energy of an extensible filament in the Langevin eq
tions, and take the limit of an inextensible filament (aext /r
→`) only in the end of the calculation.

The Langevin equations are

m
d2dx~s,t !

dt2
1§

ddx~s,t !

dt
1

dUtot

d@dx~s,t !#
5f~s,t !, ~87!

I
d2d c~s,t !

dt2
1§c

ddc~s,t !

dt
1

dUtot

d@d c~s,t !#
5jc~s,t !.

~88!

Here,m and I are mass and moment of inertia~with respect
to the center line! per unit length and§ and §c are transla-
tional and angular friction coefficients. The fluctuatio
dissipation theorem relates the amplitudes of the rand
forcesf andjc to these friction coefficients,

^ f i~s,t !&50,

^ f i~s,t ! f j~s8,t8!&52kBT§d i j d~s2s8!d~ t2t8!, ~89!

^jc~s,t !&50,

^jc~s,t !jc~s8,t8!&52kBT§cd~s2s8!d~ t2t8!. ~90!

In writing the above equations we neglected hydrodynam
interactions and therefore the treatment is analogous to
Rouse model of polymer solution dynamics@20#.

Using the relation between the deviations of the coor
natesdx and those of Euler anglesd u, d w, and d c ~see
Appendix A! and neglecting rigid body translation and rot
tion of the ring, we rewrite the above Langevin equations
9-13
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 64 011909
terms of the Fourier components of the deviations of Eu
angles from their equilibrium values@see Eq.~24!#,

âhh̃~n,t !52Lh~n!
dU

dh̃~2n,t !
1 j̃h~n,t !, ~91!

^j̃h~n,t !&50,

^j̃h~n,t !j̃h8~2n,t8!&52kBTdhh8§hLh~n!d~ t2t8!.
~92!

The time derivative operatorsâh associated with the thre
Euler angles are,

âu5âw5â5m
d2

dt2
1§

d

dt
and âc5I

d2

dt2
1§c

d

dt
,

~93!

where the corresponding friction coefficients are§u5§w5§
and§c . The elastic energy that appears in the Langevin E
~91!, is given in terms of the amplitudes of the Fouri
modes in Eq.~26!. Conveniently, the matrix of kinetic coef
ficientsL is diagonal in the Euler angle representation,

Lu~n!5n2/r 2, Lw~n!5~n221!2/~n211!r 2

and Lc~n!51/r 2. ~94!

In the following, we proceed to solve the Langevin equ
tions and obtain explicit expressions for the dynamic cor
lation function of writhe fluctuations. We focus on this co
relator since it is an integral characteristic of the ring and
therefore simpler than the two-point correlation functions
Euler angles, which depend on the separation between
points. Although the general solution of the linear equatio
can be obtained, we will assume~as it is often done in the
literature@18,21,22#! that the relaxation of the twist anglec
is much faster than that of the anglesu andw. Consequently,
we can minimize the energy with respect toc̃(n,t) and ex-
press it in terms ofũ(n,t) andw̃(n,t). With this substitution,
the (333) matrixQ(n) in ũ(n,t), w̃(n,t), c̃(n,t) space Eq.
~27! is reduced to a (232) matrix Q8(n) in ũ(n,t), w̃(n,t)
space,

Q8~n!5
1

a3n21A1
S a3A1~n221!2 A3a3n2~n221!

A3a3n2~n221! ~a3A2n21a1a2!n2D .

~95!

As shown in Appendix B, the solutions of the Langev
equations can be expressed in terms of the eigenva
L1,2(n) of the matrixP(n) of the linear form

Lh~n!
dU

dh̃~2n,t !
5(

h8
Phh8~n!h̃8~n,t !, h,h85u,w

~96!

that appears in the Langevin Eq.~91!. Explicit expressions
for these eigenvalues are given in Appendix B, Eq.~B2!.
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Taking the Fourier transform of Eq.~B9! ~Appendix B!
with respect to the frequencyv, we find the two-time corre-
lation function of the Fourier components of Euler angles

^h̃~n,t !h̃8~2n,0!&

5
1

L2~n!2L1~n!
$@L2~n!g1~n,t !2L1~n!g2~n,t !#

3^h̃~n!h̃8~2n!&2kBTLh~n!

3@g1~n,t !2g2~n,t !#dhh8%, ~97!

where gk(n,t) describes temporal decay of correlations
normal modes with wave vector 2pn/r @gk(n,0)51#, and
where ^h̃(n)h̃8(2n)& is the previously calculated equa
time equilibrium correlation function~see Sec. IV!.

In the inertial limit~i.e., for modes with inertial time scale
shorter than viscous relaxation time!, 4mLk(n).§2, the
function gk(n,t) describes damped oscillations with chara
teristic frequencyvk(n),

gk~n,t !5Fcosvk~n!t1
§

2mvk~n!
sinvk~n!t GexpS 2

t§

2mD ,

~98!

vk
2~n!5

Lk~n!

m
2

§2

4m2
. ~99!

The characteristic relaxation time is 2m/§, independent of
the wavelength of the mode. At short times,t!m/§,

gk~n,t !.cos@ALk~n!/mt#. ~100!

In the dissipative limit 4mLk(n),§2 the functiongk(n,t)
describes pure decay of correlations, with characteri
timest1(n) andt2(n),

gk~n,t !5
t1

t12t2
expS 2

t

t1
D1

t2

t22t1
expS 2

t

t2
D ,

~101!

t1,2~n!5
§

2Lk~n!
6A §2

4Lk
2~n!

2
m

Lk~n!
. ~102!

In the limit of negligible inertiam→0 we gett2(n)→0 and
the relaxation can be described by simple exponential de

gk~n,t !.exp@2tLk~n!/§#. ~103!

The dynamic writhe correlation function is derived in Ap
pendix B:

^dWr~ t !dWr~0!&5 (
nÞ0,61

Wr2~n,t !

5 (
nÞ0,61

Wr2~n!g1~n,t !g2~n,t !,

~104!
9-14
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where the equilibrium mean-squared amplitude of fluct
tions of writheWr2(n) is given in Eq.~62!. In the limit of
negligible inertiam→0 we substitute Eq.~103! for gk(n,t)
into Eq. ~104!, and find that the writhe correlation functio
for moden decays exponentially with time

Wr2~n,t !5Wr2~n!e2t/t(n). ~105!

The characteristic decay timet(n) is given by

t~n!5
§r 3

pkBT

n211

n2~n221!2

a3n21A1

~a11a2!a3n21A1a31a1a2

.

~106!

In the short wavelength limitn@1 only the sum of bending
persistence lengthsa11a2 appears int(n). Indeed, on small
scales, the filament behaves as a straight inextensible
whose properties do not depend on the twist persiste
lengtha3, or on the spontaneous twist anglec0.

In Figs. 7 and 8, we plot the writhe correlation function
a function of time measured in units of§r 2/pkBT, in the
inertial regime, for 2pmkBT/§2r 2510. Its Fourier transform
plotted as a function of the frequencyv measured in units o
pkBT/§r 2, is shown in the inset, on the upper-right side
the figure. In Fig. 7, the parameters correspond to a circ
cross section and identical persistence lengths,a15a25a3
52r . Oscillatory decay of writhe correlations as a functi
of time is observed, but the correlation remains always p
tive. A small number of fundamental frequencies can be
tected in the oscillatory pattern, and identified with pea
observed in the frequency spectrum. The amplitudes of th
peaks decrease monotonically with the frequency, and
largest peak is atv50. The case of an asymmetric cro
section and dominant bending rigidity,a15a352r and a2
520r (c05p/4) is shown in Fig. 8. The correlation functio
decays rapidly to zero and, at later times, oscillates betw
positive and negative values. Since fort!m/§, dissipation is
negligible, the fast initial decay of correlations is the result

FIG. 7. Plot of dynamic correlation function of writhe fluctua
tions ^dWr(t)dWr(0)& vs timet ~in units of§r 2/pkBT), for a ring
with a circular cross section and persistence lengthsa15a25a3

52r , in the inertial range 2pmkBT/§2r 2510. Plot of the Fourier
transform of the correlation functions vs frequencyv ~in units of
pkBT/§r 2) is shown as an inset in the upper-right-hand side of
figure.
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dephasing of the oscillatory contributions of a large num
of modes. In the frequency domain, there is no peak av
50 and the peak amplitudes have a nonmonotonic dep
dence on the frequency.

In Fig. 9, we plot the writhe correlation function i
the dissipative regime where inertia is negligib
2pmkBT/§2r 251023 for ribbonlike rings with different
bending and twist rigidities. The amplitude of writhe fluctu
tions is smallest for a ribbon whose shorter axis of inertia
normal to the plane of the ring@see Fig. 6~b!#. The amplitude
increases by more than a factor of two when the shorter
of inertia lies in the plane of the ring@see Fig. 6~a!#. Twist
rigidity decreases the fluctuation amplitude but the effec
rather weak. Since inertial oscillations are completely s
pressed in this overdamped regime, the correlations de
monotonically with time. The curves exhibit fast short-tim
relaxation, followed by an exponential decay, in qualitati
agreement with numerical simulations reported in Ref.@19#.
An analytic expression for the time dependence of the c
relator at short times can be derived@see Eq.~B18! in Ap-

e

FIG. 8. Plot of dynamic correlation function of writhe fluctua
tions ^dWr(t)dWr(0)& vs time t ~in units of §r 2/pkBT), for a
ribbonlike ring with persistence lengthsa15a352r and a2520r
(c05p/4), in the inertial range 2pmkBT/§2r 2510. Plot of the
Fourier transform of the correlation functions vs frequencyv ~in
units of pkBT/§r 2) is shown as an inset in the upper-right-ha
side of the figure.

FIG. 9. Plot of dynamic correlations function of writhe fluctu
tions ^dWr(t)dWr(0)& vs time t ~in units of §r 2/pkBT), for rib-
bonlike rings in the dissipative range 2pmkBT/§2r 251023: The
parameters arec050 and a152r , a2520r , a352r ~cross!, a1

520r , a252r , a352r ~circle!, and a1520r , a252r , a3510r
~diamond!.
9-15
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pendix B#. The predicted^@dWr(t)2dWr(0)#2&}t1/4 de-
pendence of the writhe correlation function and the fact t
it depends only on the bending rigidity (a1 and a2), are
direct consequences of the observation that at short tim
the relaxation is dominated by straight rod contributions
the spectrum@t(q)}1/q4#.

The above results can be directly applied to the study
deformation of macroscopic rings by external forces a
torques. Unlike the case of microscopic filaments, where
sipation dominates inertia and only overdamped behavio
expected, inertial effects play an important role in the d
namic response of macroscopic objects~for this reason, they
were included in the preceding analysis!. According to the
fluctuation-dissipation theorem, dynamic correlation fun
tions of Euler angles can be treated as generalized susc
bilities that determine the response of the ring to extern
applied torques and forces. The time-dependent genera
tion of the static relation between deformation~in terms of
the deviation of the Euler angles from their equilibrium va
ues! and applied force Eq.~77! is

dh~s,t !5
1

kBTE2`

t

dt8(
h8

R ds8
d

dt8
^dh~s,t !dh8~s8,t8!&

3Mh8~s8,t8!, ~107!

where the momentsM due to external forces, are given b
Eq. ~80!. The relaxation of the deformation following th
release of external moments at timet50, M (s,t)5M (s)u
(2t), for t.0 is given by

dh~s,t !5
1

kBT (
h8

R ds8^dh~s,t !dh8~s8,0!&Mh8~s8!.

~108!

IX. DISCUSSION

In this paper, we presented the statistical mechanics
fluctuating rings. We derived analytical expressions for va
ous static properties of such rings, including two-point c
relation functions of Euler angles, the correlation function
tangents to the ring, rms distance between points on the
contour, radius of gyration, and probability distribution fun
tion of writhe, as a function of persistence lengths associa
with bending and twist deformations of the ring. We fou
that the amplitudes of fluctuations of the Euler anglesc and
u diverge in the limit of vanishing twist rigidity. We would
like to emphasize that the situation differs from the case
straight filaments for which the twist densitydv3

rod

5dd c/ds depends only on the fluctuations of the Eu
angle c. For such filaments, vanishing twist rigidity (a3
50) implies that there is no energy penalty for twisting t
cross section about the center line, but the presence of b
ing rigidity (a1 ,a2Þ0) suffices to suppress spatial fluctu
tions of the center line about its straight stress free confi
ration. Thus, if we are only interested in the statistic
mechanics of the spatial conformations of the center li
accounting for bending rigidity suffices to provide an acc
rate description of straight fluctuating filaments. For rin
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inspection of the elastic energy, Eq.~17!, shows that when
a350, fluctuations withdd u/ds1d c/r 50 have zero en-
ergy cost and, since in the absence of twist rigidity the an
d c can always adjust itself to satisfy the conditiond c5
2rddu/ds, there is no elastic energy penalty for out-o
plane fluctuations of the ring and the amplitude of such fl
tuations diverges even if the bending rigidity remains fini
Therefore, wormlike chain theories in which only bendin
rigidity is taken into account, cannot model the spatial co
formation of fluctuating rings.

We found that a crossover length scalej t5rAa3 /ab ex-
ists, below which straight rod behavior dominates and wri
of the center line and twist of the cross section about it
decoupled, and above which spontaneous curvature beco
important and twist affects the three-dimensional configu
tions of the center line of the ring. In this context, we wou
like to propose the as yet unproven but plausible conject
that the existence of this crossover does not depend on
topology of the ring and is characteristic of filaments w
spontaneous curvature in their stress-free state.

Although the main focus of this work is on the statistic
mechanics of fluctuating rings, we used the fluctuatio
dissipation theorem in order to predict mechanical respo
to external torques and forces, and showed that the defor
tion of ribbonlike rings depends, in an essential way, on
orientation of the cross section in the stress-free state.
nally, we derived the Langevin equations that govern
dynamics of fluctuating rings, and calculated the two-tim
correlation function of writhe fluctuations. Depending on t
values of the parameters, one can move from an inertial
gime where relaxation is accompanied by temporal osci
tions, to a non-oscillatory, purely dissipative regime. In t
dissipation dominated range, the relaxation at short time
determined by bending rigidity only. This agrees with t
expectation that short-time relaxation is dominated by sm
scale, straight rod behavior. At longer times, the decay
writhe correlations depends on both bending and twist rig
ties. While inertial effects are not expected to be import
for microscopic objects such as small plasmids, our dyna
response functions can describe the relaxation of rings
arbitrary mass and size, following the cessation of extern
applied forces and torques.

We would like to comment on the limitations of the a
proach presented in this paper. The domain of applicab
of our theory is limited to the weak fluctuation regime, in th
sense that the deviations of the Euler angles from their
ues in the undeformed ring, must be sufficiently small. A
though, in principle, our general formalism is applicable
rings with arbitrary spontaneous twist in their stress-free r
erence state, the analysis of this problem meets with con
erable mathematical difficulties and is the subject of ongo
work. Finally, we would like to emphasize that since o
theory is based on the linear theory of elasticity of thin ro
all persistence lengths and radii of curvature are assume
be much larger than the diameter of the filament that ser
as a small scale cutoff. Consideration of microscopic phys
on length scales smaller than this diameter requires the
troduction of additional model assumptions~see Refs.@23–
25#! and is beyond the scope of this paper.
9-16
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After this paper was submitted for publication, we learn
about a related study of thermal fluctuations in DNA pla
mids in which the writhe distribution function was also ca
culated@26#. This work is complementary to ours: while w
assume that the equilibrium stress-free state of our filam
is that of a planar untwisted circular ring, Ref.@26# deals
with filaments with straight untwisted stress-free state. C
ceptually, the ring is then formed by bringing the ends
gether and sealing them, with or without the addition
twist. Since such rings have locked-in internal stresses,
two procedures are nonequivalent in general.
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APPENDIX A: DERIVATION
OF LANGEVIN EQUATIONS

For small deviations from the stress-free state, the va
tion of a triad of vectors can be written as

dt152~du cosc01dw sinc0!t031d ct02,

dt25~d u sinc02dw cosc0!t032d ct02, ~A1!

dt352~d u sinc02dw cosc0!t021~d u cosc0

1d w sinc0!t01,

where the vectorst0i are defined in Eq.~12!. Substituting
Eqs.~A1! into the inextensibility condition Eq.~2! we obtain
the following equations for the deviationdx(s) of the posi-
tion vector of a points on the ring contour, from its value in
the undeformed state,

ddx3

ds
2v02dx11v01dx250, ~A2!

2
ddx2

ds
1v01dx32v03dx15d u sinc02d w cosc0 ,

~A3!

ddx1

ds
1v02dx32v03dx25d u cosc01d w sinc0 .

~A4!

Equation ~A2! is the linearized form of the inextensibilit
condition, and Eqs.~A3! and ~A4! relate the deviations o
Euler angles to those of spatial positions.

Fourier transforming Eqs.~87! and~88!, yields the Lange-
vin equations for the Fourier componentsx̃(n) and c̃(n),

â x̃~n,t !1
dU

d x̃~2n,t !
1m~n,t !c* ~n!5 f̃~n,t !, ~A5!
01190
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nt
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âcc̃~n,t !1
dU

dc̃~2n,t !
5 j̃c~n,t !, ~A6!

whereâ and âc are defined in Eq.~93! and

m~n,t !5
aextkBT

r 2
x̃~n,t !•c~n!,

c~n!52~sinc0 ,2cosc0 ,in !. ~A7!

In the limit aext→`, m(n,t) can be considered as
Lagrange multiplier that accounts for the inextensibility co
dition, Eq. ~A2! or, equivalently, for its Fourier transform
x̃(n,t)•c(n)50. The correlators of random forces in Eq
~A5! and ~A6!, take the form,

^ f̃ i~n,t !&50, ^ f̃ i~n,t ! f̃ j~2n,t8!&52§kBTd i j d~ t2t8!,
~A8!

^j̃c~n,t !&50, ^j̃c~n,t !j̃c~2n,t8!&52§ckBTd~ t2t8!.
~A9!

Using Fourier transforms of Eqs.~A2!–~A4! we rewrite the
Langevin Eqs.~A5!–~A9! in terms of Euler angles Eqs.~91!
and ~92!.

APPENDIX B: SOLUTION OF LANGEVIN EQUATIONS

In order to find the solution of the Langevin equations, w
first calculate the eigenvalues and eigenfunctions of the
trix ~see Eq.~96! for its definition!,

P~n!5
pkBT

r 3

n2~n221!

a3n21A1

3S A1a3~n221! A3a3n2

A3a3

~n221!2

n211
~A2a3n21a1a2!

n221

n211
D .

~B1!

Eigenvalues of this matrix have the form

L1,2~n!5
pkBT

2r 3

n2~n221!2

n211

3
~a11a2!a3n21A1a31a1a26D

a3n21A1

, ~B2!

D25@~a12a2!a3n21A1a32a1a2#2

14n2a2a3~a12a2!~a12a3!sin2 c0 .

The eigenvaluesLk(n) vanish whenn50,1. These modes
are associated with rigid body rotations of the ring and
not considered further below. In the limitunu@1 both eigen-
values increase with the fourth power ofn, Lk(n)
.pkBTakn

4/r 3. This q4 dependence of the eigenvaluesq
9-17
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52pn/r is the wave vector corresponding to thenth mode! is
characteristic of bending fluctuations of straight rods, in
cord with the expectation that small-scale fluctuations o
ring are indistinguishable from those of a straight rod.

The matrixP(n) becomes diagonal~and the anglesu and
w become decoupled!, in the case of a circularly symmetri
cross section (A350), whenc050 or p/2, and in the limit
a3→0. In all of these cases, the modeL1(n) describes both
fluctuations perpendicular to the plane of the ring and tw
fluctuations, and the modeL2(n) describes fluctuations in
the plane of the ring. SinceL1(n)→0 when a3→0, twist
fluctuations destroy the circular shape of the ring in
wormlike chain model, where twist rigidity is not taken in
account.

The eigenvalues take a particularly simple form forc0
50,

L1~n!5
pkBT

r 3

n2~n221!2a1a3

a3n21a1

,

L2~n!5
pkBT

r 3

n2~n221!2a2

n211
. ~B3!

Since the matrixP(n) Eq. ~B1! is not symmetric, it has
different right and left eigenfunctions. We denote the rig
eigenfunctions, corresponding to eigenvaluesLk(n), by
h̄k(n)5$ūk(n),w̄k(n)%, ~wherek51,2). Left eigenfunctions
can be written ash̄k(2n)Lh

21(n). Since the matrixP(n) is

real, we haveh̄k(2n)5h̄k* (n). For eachnÞ0,61, the
above eigenfunctions are normalized by conditions:

(
h

Lh
21~n!h̄k~n!h̄ l~2n!5dkl ,

(
k

h̄k~n!h̄k8~2n!5Lh~n!dhh8 . ~B4!

Expanding the matrixP(n) over its eigenfunctions we find

Phh8~n!5(
k

Lk~n!h̄k~n!h̄k8~2n!Lh8
21

~n!. ~B5!

The solution of Eq.~91! can be found by Fourier trans
forming it with respect to the timet, and substituting Eqs
~96! and ~B5!. This yields

h̃v~n!5(
k

h̄k~n!

ãv1Lk~n!
(
h8

h̄k8~n!j̃h8v~n!, ~B6!

ãv52mv21 i §v, ~B7!

where the correlators of the Gaussian random force are

^j̃hv~n!&50, ^j̃hv~n!j̃h82v~2n!&52kBT§Lhdhh8 .
~B8!
01190
-
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t

e

t

Calculating the correlation functions of Euler angles, w
get

^h̃v~n!h̃2v8 ~2n!&52kBT§(
k

h̄k~n!h̄k8~2n!

uãv1Lk~n!u2
, ~B9!

whereh,h85u,w. In the time domain this gives the follow
ing expression for the dynamic correlation functions of t
Fourier transforms of Euler angles,

^h̃~n,t !h̃8~2n,0!&5kBT(
k

h̄k~n!h̄k8~2n!

Lk~n!
gk~n,t !,

~B10!

where

gk~n,t !5
2§Lk~n!

p E
0

` dv cosvt

@Lk~n!2mv2#21§2v2
.

~B11!

The functiongk(n,t) describes temporal decay of correl
tions of normal modes, with wave vector 2pn/r . One can
verify that for t50, integration givesgk(n,0)51, indepen-
dent of m and §. Instead of calculating the eigenfunction
h̄k(n), we notice that the combinationsh̄k(n)h̄k

8

(2n)/Lk(n) in the above expression, can be evaluated us
the previously derived expressions for the equilibrium~equal
time! correlatorŝ h̃(n)h̃8(2n)&, and the normalization con
ditions, Eq. ~B4!. Substituting these expressions into E
~B10!, we arrive at Eq.~97!.

We now turn to writhe fluctuations@see Eq.~59!#,

dWr~ t !52(
n

inE dv

2p
w̃v~n!eivtE dv8

2p
ũv8~2n!eiv8t,

~B12!

and proceed to calculate the dynamic correlation function
these fluctuations,

^dWr~ t !dWr~0!&5 (
nÞ0,61

Wr2~n,t !, ~B13!

where the contribution of moden is

Wr2~n,t !5kB
2T2n2E dv

2pE dv8

2p
cos@~v1v8!t#

3@^ũv~2n!ũ2v~n!&^w̃v8~n!w̃2v8~2n!&

2^ũv~2n!w̃2v~n!&^ũ2v8~n!w̃v8~2n!&#.

~B14!

Substituting Eq.~43! for the correlation functions of Eule
angles yields,
9-18
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Wr2~n,t !5kB
2T2n2(

kk8

gk~n,t !gk8~n,t !

Lk~n!Lk8~n!

3@ ūk~n!ūk~2n!w̄k8~n!w̄k8~2n!

2 ūk~n!w̄k~2n!w̄k8~n!ūk8~2n!#. ~B15!

The only nonvanishing contributions to the sum in Eq.~B15!
are k51,k852, and k52,k851, and both have the sam
value. As a result, we find that the contribution of thenth
mode to the dynamic correlation function can be recast in
form

Wr2~n,t !5Wr2~n!g1~n,t !g2~n,t !, ~B16!

where Wr2(n) is the mean-squared amplitude of thenth
mode of writhe fluctuations in equilibrium, calculated earl
in Eq. ~62!.

Finally, we would like to comment on the short-time b
havior of the correlation function in the dissipative regim
Using Eq.~105! we find
s

r,

s-

e,

01190
e

r

.

^@dWr~ t !2dWr~0!#2&5
4r 2

p2a1a2a3

3 (
n52

`
A11a3n2

~n221!2
@12e2t/t(n)#.

~B17!

At small timest!t(2) this sum is dominated by terms wit
n@1. Replacing the sum by an integral we find

^@dWr~ t !2dWr~0!#2&5
4r 2

p2a1a2

GS 3

4D
3FpkBT

§r 3
~a11a2!tG 1/4

,

~B18!

whereG is the gamma function. The characteristic relaxati
ratepkBT(a11a2)/§r 3 depends only on the bending rigidit
of the ring.
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